DOI QR코드

DOI QR Code

Conceptual Design of KSLV-II Launch Complex Flame Deflector

한국형발사체 발사대시스템 화염유도로 개념 설계 (I)

  • Oh, Hwayoung (Launch Complex Team, Korea Aerospace Research Institute) ;
  • Kang, Sunil (Launch Complex Team, Korea Aerospace Research Institute) ;
  • Kim, Daerae (Launch Complex Team, Korea Aerospace Research Institute) ;
  • Lee, Jungil (Energy Research Department Advanced Technology Institute, Hyundai Heavy Industries) ;
  • Um, Hyungsik (Energy Research Department Advanced Technology Institute, Hyundai Heavy Industries) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2014.06.05
  • Accepted : 2014.11.18
  • Published : 2014.12.01

Abstract

The flame deflector should be constructed to minimize the induced environmental effects on the launch vehicle and to minimize the exhaust impingement effects on the launch complex structures during the lift-off operation. Therefore, it should be designed to avoid recirculation and reverse flow of rocket exhaust plumes. The circumstance around launch complex and characteristics of launch vehicle should be taken into consideration for the flame deflector design. In this paper, we designed the flame deflector reflecting KSLV-II 1st engine characteristics and analyzed the effect of exhaust plumes related to change geometry by means of computational flow analysis.

우주발사체 이륙 시 발생하는 연소 후류에 의한 발사체 및 발사대 구조물에 대한 손상을 방지하기 위해 적절한 형상의 화염유도로가 구축되어야 한다. 화염유도로는 발사체로부터 배출되는 풀룸이 재순환되거나 역류가 발생하지 않는 적절한 형상으로 설계되어야 하며, 발사장 주변 여건과 운용되는 발사체의 엔진 특성이 반영되어야 한다. 본 논문에서는 한국형발사체 1단부 엔진 특성을 고려하여 화염유도로 기초 형상을 설계하였으며, 플룸을 추진제 연소가스 대신 공기로 가정한 전산유동해석을 통해 화염유도로 형상에 따른 연소 후류의 영향에 대해 분석하였다.

Keywords

References

  1. Evans, R.L. and Sparks, O.L., "Launch Deflector Design Criteria and Their Application to the SATURN C-1 Deflector," NASA TN D-1275, 1963.
  2. Philips, J.D., "Flame Deflector Design, Standard For," NASA, KSC-STD-Z-0012B, 1990.
  3. Kang, S.I. and Huh, H.I., "A CFD Study for Rocket Exhaust Flow Using Single Species, Unreacted Flow Model," Journal of Aerospace Engineering and Technology, Vol. 11, No. 1, pp. 126-134, 2012.
  4. Kim, S.R., Hwang, D.K., Kang, S.I., Nam, J.W., Kim, D.R. and Ra, S.H., "KSLV-I Plume Analysis Part I for the Launch Pad Flame Deflector Performance," Proceedings of the 2010 KSAS Spring Conference, Pyeongchang, Korea, pp. 361-364, Apr. 2010.
  5. Kim, S.R., Hwang, D.K., Kang, S.I., Nam, J.W., Kim, D.R., Ra, S.H. and Kim, I.S., "KSLV-I Plume analysis part II for the launch pad flame deflector performance," Proceedings of the 2010 KSAS Spring Conference, Pyeongchang, Korea, pp. 1207-1210, Apr. 2010.
  6. Hwang, D.K., Nam, J.W., Kim, S.R., Kang, S.I., Kim, D.R. and Ra, S.H., "KSLV-I Plume Analysis Part III for the Launch Pad Flame Deflector Performance," Proceedings of the 2010 KSPE Fall Conference, Changwon, Korea, pp. 375-378, Nov. 2010.
  7. Chung, Y.G., Cho, N.K. and Han, Y.M., "Design of Compressed Gas Supply System for Combustion Chamber Test Facility," Journal of the Korean Society of Propulsion Engineers Vol. 18, No. 1, pp. 85-90, 2014. https://doi.org/10.6108/KSPE.2014.18.1.085
  8. Kim, S.R., Lee, Y.H. and Kim, I.S., "Flow Analysis of Flame Deflector of Launch Pad," Proceedings of the 2003 KSAS Fall Conference, Kyungjoo, Korea, pp. 597-600, Nov. 2003.
  9. Gordon, S. and Mcbridge, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications," NASA, RP-1311, 1996.