DOI QR코드

DOI QR Code

연령이 홀스타인 육우송아지 등심 및 우둔의 카르니틴, 유리아미노산 및 핵산 관련 물질 함량에 미치는 영향

Effect of age on the contents of carnitine, free amino acid, and nucleotide-related compound in ribeye and top round from Holstein calf

  • 조수현 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 강근호 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 성필남 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 박범영 (농촌진흥청 국립축산과학원 축산물이용과) ;
  • 강선문 (농촌진흥청 국립축산과학원 축산물이용과)
  • Cho, Soohyun (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, Geunho (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Seong, Pil-Nam (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Beomyoung (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kang, Sun Moon (Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration)
  • 투고 : 2014.10.14
  • 심사 : 2014.11.11
  • 발행 : 2014.12.31

초록

본 연구는 연령이 홀스타인 육우송아지 등심 및 우둔의 카르니틴, 유리아미노산 및 핵산 관련 물질 함량에 미치는 영향을 구명하고자 실시하였다. 총 20두의 송아지들을 5두씩 4그룹으로 나누어 3, 6, 9, 12개월령까지 사육하여 도축한 후 좌도체에서 등심(ribeye; M. longissimus dorsi)과 우둔(top round; M. semimembranosus)을 시료로써 채취하였다. 카르니틴 함량은 등심과 우둔에 각각 0.79-1.16 및 0.65-1.26 mg/100 g 수준으로 함유되어 있었으며, 두 부위 모두에서 3개월령이 가장 높은 경향을 나타내었다. 유리아미노산 함량은 등심과 우둔 모두에서 대부분의 구성아미노산이 12개월령에서 가장 높았다(p<0.05). 핵산 관련 물질 함량 역시 등심과 우둔 모두에서 구아노신 일인산, 아데노신 일인산, 이노신 일인산 및 이노신이 12개월령에서 가장 높은 수준을 보였던 반면(p<0.05), 하이포크산틴은 12개월령에서 가장 낮았다(p<0.05). 따라서 연령이 증가함에 따라 홀스타인 육우송아지 고기의 카르니틴 함량이 감소했으나, 유리아미노산 및 좋은 맛과 관련된 핵산 물질의 함량은 증가하였다.

This study was conducted to investigate the effect of age on the contents of carnitine, free amino acid, and nucleotide-related compound in Holstein calf meat. Twenty calves were allocated into four age groups (3, 6, 9, or 12 mon of age; n=5/group), and ribeye (M. longissimus dorsi) and top round (M. semimembranosus) were excised from left side of each carcass on day 1 post-mortem. Carnitine contents for ribeye and top round were 0.79~1.16 and 0.65~1.26 mg/100 g, respectively, and those showed a tendency to be the highest in 3 mon group. The contents of majority of free amino acids were the highest (p<0.05) in ribeye and top round from 12 mon group. The contents of adenosine monophosphate, inosine monophosphate, and inosine were the highest (p<0.05) in ribeye and top round from 12 mon group, but hypoxanthine content was the lowest (p<0.05) in those from 12 mon group. These findings suggest that age decreases the carnitine content but increases free amino acid and good taste-related nucleotides contents in Holstein calf meat.

키워드

참고문헌

  1. Ando S, Tadenuma T, Tanaka Y, Fukui F, Kobayashi S, Ohashi Y, Kawabata T. 2001. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. Journal of Neuroscience Research 66:266-271. https://doi.org/10.1002/jnr.1220
  2. Arduini MD. 1992. Carnitine and its acyl esters as secondary antioxidants? American Heart Journal 123:1726-1727.
  3. Armstrong MD, Stave U. 1973. A study of plasma free amino acid levels. III. Variations during growth and aging. Metabolism 22:571-578. https://doi.org/10.1016/0026-0495(73)90070-X
  4. Bell FP, Vidmar TJ, Raymond TL. 1992. L-carnitine administration and withdrawal affect plasma and hepatic carnitine concentrations, plasma lipid and lipoprotein composition, and in vitro hepatic lipogenesis from labeled mevalonate and oleate in normal rabbits. Journal of Nutrition 122:959-966.
  5. Boccard RL, Naude RT, Cronje DE, Smit MC, Venter HJ, Rossouw EJ. 1979. The influence of age, sex and breed of cattle on their muscle characteristics. Meat Science 3:261-280. https://doi.org/10.1016/0309-1740(79)90003-2
  6. Borum PR. 1978. Variation in tissue carnitine concentrations with age and sex in the rat. Biochemical Journal 176:677-681.
  7. Broquist HP. 1994. Carnitine. In Modern Nutrition in Health and Disease (8th) edited by Shils ME, Olson JA, Shike M. pp. 459-465. Lea and Febiger Publisher, Philadelphia, USA.
  8. Cerny C, Grosch W. 1994. Precursors of ethylmethylpyrazine isomers and 2,3-diethyl-5-methylpyrazine formed in roasted beef. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 198:210-214. https://doi.org/10.1007/BF01192597
  9. Cha YS, Kim HY, Soh JR, Oh SH. 2000. Changes of carnitine levels during the germination of soybean seeds. Journal of the Korean Society of Food Science and Nutrition 29:762-765.
  10. Clemens E, Arthaud V, Mandigo R, Woods W. 1973. Fatty acid composition of bulls and steers as influenced by age and dietary energy level. Meat Science 37:1326‒1331.
  11. Costell M, O'Connor JE, Grisolia S. 1989. Age-dependent decrease of carnitine content in muscle of mice and humans. Biochemical and Biophysical Research Communications 161:1135-1143. https://doi.org/10.1016/0006-291X(89)91360-0
  12. Dayanandan A, Kumar, P, Panneerselvam C. 2001. Protective role of L-carnitine on liver and heart lipid peroxidation in atherosclerotic rats. The Journal of Nutritional Biochemistry 12:254-257. https://doi.org/10.1016/S0955-2863(00)00151-0
  13. Diaz M, Lopez M, Hernandez F. Urbina JA. 2000. L-carnitine effects on chemical composition of plasma lipoproteins of rabbits fed with normal and high cholesterol diets. Lipids 35:627-632. https://doi.org/10.1007/s11745-000-0566-2
  14. Evangeliou A, Vlassopoulos D. 2003. Carnitine metabolism and deficit-when supplementation is necessary? Current Pharmaceutical Biotechnology 4:211-219. https://doi.org/10.2174/1389201033489829
  15. Fiechter C, Sivec G, Mayer HK. 2013. Application of UHPLC for the simultaneous analysis of free amino acids and biogenic amines in ripened acid-curd cheeses. Journal of Chromatography B 927:191-200. https://doi.org/10.1016/j.jchromb.2012.12.006
  16. Haecker R, Kaiser E, Oellerich M, Silipradi N. 1990. Carnitine: metabolism, function and clinical application. Journal of Clinical Chemistry and Clinical Biochemistry 28:291-295.
  17. Iwamoto E, Oka A, Iwaki F. 2009. Effects of the fattening period on the fatty acid composition of fat deposits and free amino acid and inosine acid contents of the longissimus muscle in carcasses of Japanese Black steers. Animal Science Journal 80:411-417. https://doi.org/10.1111/j.1740-0929.2009.00648.x
  18. Kadim IT, Mahgoub O, Al-Marzooqi W, Al-Zadjali S, Annamalai K, Mansour MH. 2006. Effects of age on composition and quality of muscle longissimus thoracis of the Omani Arabian camel. Meat Science 73:619-625. https://doi.org/10.1016/j.meatsci.2006.03.002
  19. Kakou A, Megoulas NC, Kouppair MA. 2005. Determination of L-carnitine in food supplement formulations using ion-pair chromatography with indirect conductimetric detection. Journal of Chromatography A 1069:209-215. https://doi.org/10.1016/j.chroma.2005.02.021
  20. KAPE. 2014. 2013 Animal Products Grading Statistical Yearbook. Korea Institute for Animal Products Quality Evaluation, Gunpo, Korea.
  21. Kato H, Ra Rhue M, Nishimura T. 1989. Role of free amino acids and peptides in food taste. In Flavor chemistry, trends and developments, R. Teranishi, Buttery, R. G. and Shahidi, F. (Eds.), ACS Symposium series 388, ACS, Washington, USA, pp. 158-174.
  22. Loster H, Bohm U. 2001. L-carnitine reduces malondialdehyde concentrations in isolated rat hears in dependence on perfusion conditions. Molecular and Cellular Biochemistry 217:83-90. https://doi.org/10.1023/A:1007255021484
  23. Lv YF, Hu X, Bi KS. 2007. Determination of mildronate in human plasma and urine by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 852:35-39. https://doi.org/10.1016/j.jchromb.2006.12.031
  24. Maccari F, Arseni A, Chiodi P, Ramacci MT, Angelucci L, Hulsmann WC. 1987. L-carnitine effect on plasma lipoproteins of hyperlipidemic fat-loaded rats. Lipids 22:1005-1008. https://doi.org/10.1007/BF02536440
  25. Mancy RL, Naumann HD, Bailey ME. 1964. Water-soluble flavour and odour precursors of meat. (I) Qualitative study of certain amino acids, carbohydrates, non amino-acid nitrogen compounds and phosphoric acid esters of beef, pork, and lamb. Journal of Food Science 29:136-141. https://doi.org/10.1111/j.1365-2621.1964.tb01708.x
  26. Melton SL, Amiri M, Davis GW, Backus WR. 1982. Flavor and chemical characteristics of ground beef from grass‒, forage‒Grain‒ and grain‒finished steers. Journal of Animal Science 55:77-87.
  27. MFDS. 2008. Korea Health Function Code. Ministry of Food and Drug Safety, Cheongju, Korea.
  28. Muller DM, Seim H, Kiess W, Loster H, Richter T. 2002. Effects of oral L-carnitine supplementation on in vivo long-chain fatty acid oxidation in healthy adults. Metabolism 51:1389-1391. https://doi.org/10.1053/meta.2002.35181
  29. Okumura T, Saito K, Sowa T, Sakuma H, Ohhashi F, Tameoka N, Hirayama M, Nakayama S, Sato S, Gogami T, Akaida M, Kobayashi E, Konishi K, Yamada S, Kawamura T. 2012. Changes in beef sensory traits as somatic-cell-cloned Japanese black steers increased in age from 20 to 30 months. Meat Science 90:159-163. https://doi.org/10.1016/j.meatsci.2011.06.020
  30. Sachan DS, Hynatt RL. 1993. Wheat gluten based diet retarded ethanol metabolism by altering alcohol dehydrogenase and hot carnitine status in adult rats. The Journal of the American College of Nutrition 12:170-175. https://doi.org/10.1080/07315724.1993.10718298
  31. Schmidt-Sommerfeld E, Werner, D, Penn D. 1988. Carnitine plasma concentrations in 353 metabolically healthy children. European Journal of Pediatrics 147:356-360. https://doi.org/10.1007/BF00496410
  32. SAS. 2010. SAS/STAT Software for PC. Release 9.2, SAS Institute Inc., Cary, NC, USA.
  33. Tikk M, Tikk K, Torngren MA, Meinert L, Aaslyng MD, Karlsson AH. 2006. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. Journal of Agricultural and Food Chemistry 54:7769-7777. https://doi.org/10.1021/jf060145a
  34. Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorren V, Barcellona ML. 2000. L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biological Toxicology 16:99-104. https://doi.org/10.1023/A:1007638025856
  35. Watanabe K, Lan HI, Yamaguchi K. 1990. Role of extractive components of scallop in its characteristic taste development. Nippon Shokuhin Kogyo Gakkaishi 37:439-445. https://doi.org/10.3136/nskkk1962.37.6_439
  36. Wolf G. 1965. Recent research in carnitine. MIT Press, Cambridge, USA.
  37. Yoneda C, Okubo K, Kasai M, Hatae K. 2005. Extractive components of boiled-dried scallop adductor muscle and effect on the taste of soup after mixing with chicken leg meat. Journal of the Science of Food and Agriculture 85:809-816. https://doi.org/10.1002/jsfa.2040