DOI QR코드

DOI QR Code

Segment-based Differentiated Pricing Strategy for Reducing Congestion of Expressways

고속도로 혼잡 완화를 위한 구간별 차등요금 부과전략

  • Lee, Eunho (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Dong-Kyu (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kho, Seung-Young (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Hyo Seung (Integrated Research Institute of Construction and Environmental Engineering, Seoul National University)
  • 이은호 (서울대학교 건설환경공학부) ;
  • 김동규 (서울대학교 건설환경공학부) ;
  • 고승영 (서울대학교 건설환경공학부) ;
  • 김효승 (서울대학교 건설환경종합연구소)
  • Received : 2014.08.12
  • Accepted : 2014.11.02
  • Published : 2014.12.31

Abstract

This paper develops a differentiated pricing strategy over each segment of expressways based on the second-best pricing method for reducing congestion. To this end, a bi-level problem is proposed, in which the upper level of the model is formulated to determine toll level of each segment for minimizing traffic congestion, whereas the lower level of the model is formulated as a variable demand assignment problem. The sensitivity analysis based algorithm is took placed to find optimal solutions of upper level model. An application of the proposed model uses the modified Sioux-Falls network. The results show that the segment-based differentiated pricing strategy performs better than the existing uniform pricing strategy in reducing traffic congestion. This study can be applied as a demand management method to relieve disutility of excessively congested segments of expressways.

본 연구는 고속도로의 혼잡 완화를 위해 차선통행료 방식에 근거한 고속도로 구간별 차등요금 부과전략을 개발하는데 그 목적이 있다. 이를 위해 상위단계의 교통혼잡 최소화를 위한 각 구간의 주행요금을 산정하는 문제와 하위단계의 가변수요 통행배정문제로 구성된 바이레벨 형태의 모형을 제시하였다. 상위단계 문제의 최적 해를 찾기 위해 민감도 분석 기반의 알고리즘을 이용하였으며, 제안된 모형의 검증을 위해 수정된 Sioux-Falls 네트워크에 적용하였다. 적용 결과 차등요금 부과전략 적용 시 균일한 요금을 징수한 경우보다 교통혼잡이 개선된 것으로 나타났으며 이는 고속도로 구간의 혼잡 완화로 인한 것임을 확인할 수 있었다. 본 연구는 고속도로 특정 구간의 과도한 혼잡으로 인해 발생하는 비효용을 절감하기 위한 수요관리 방안으로 적용될 수 있다.

Keywords

References

  1. Beckmann M. J. (1965), On Optimal Tolls for Highways, Tunnels and Bridges. Veh. Traffic Sci., Elsevier, New York, 331-341.
  2. Dafermos S., Sparrow F. T. (1971), Optimal Resource Allocation and Toll Patterns in User-Optimised Transport Networks, J. Transp. Econ. and Policy, 5(2), 184-200.
  3. Kim B. K., Lim Y. T., Lim K. W. (2004), Development of a Model for Calculating Road Congestion Toll with Sensitivity Analysis, J. Korean Soc. Transp., 22(5), Korean Society of Transportation, 139-149.
  4. Kim S. H. (2014), A Region-based Expressway Pricing Strategy for Improving Social Benefit and Revenue, Ph.D. Dissertation, Seoul National University, Korea.
  5. Kwon Y. S. (2003), A Study on The Demand Management for Determination of Freeway Toll System, J. Korean Soc. Transp., 21(3), Korean Society of Transportation, 7-14.
  6. Kwon Y. S., Park B. J., Rlee S. M. (2001), Optimal Network Design Using Sensitivity Analysis for Variable Demand Network Equilibrium, J. Korean Soc. Transp., 19(1), Korean Society of Transportation, 89-99.
  7. Lee J. Y., Lee K. Y., Jang M. S. (2004), Reviews for Introducing Congestion Toll on Highway (고속도로에서의 혼잡통행료 도입방안 검토), J. Korea Road & Transp. Associ., 97, 14-27.
  8. Lim Y. T. (2004), Development of a Continuous Network Design Model Based on Sensitivity Analysis, J. Korean Soc. Transp., 22(2), Korean Society of Transportation, 65-76.
  9. Sheffi Y. (1985), Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  10. Tobin R. L., Friesz T. L. (1988), Sensitivity Analysis for Equilibrium Network Flow, Transp. Sci., 22(4), 242-250. https://doi.org/10.1287/trsc.22.4.242
  11. Wong S. C., Yang H. (1997), Reserve Capacity of a Signal-Controlled Road Network, Transp. Res.-B, 31(5), 397-402. https://doi.org/10.1016/S0191-2615(97)00002-7
  12. Yang H. (1997), Sensitivity Analysis for the Elastic-Demand Network Equilibrium Problem with Applications, Transp. Res.-B, 31(1), 55-70. https://doi.org/10.1016/S0191-2615(96)00015-X
  13. Yang H., Bell M. G. (1997), Traffic Restraint, Road Pricing and Network Equilibrium, Transp. Res.-B, 31(4), 303-314. https://doi.org/10.1016/S0191-2615(96)00030-6
  14. Yang H., Huang H. (1998), Principle of Marginal-Cost Pricing: How Does It Work in a General Road Network?, Transp. Res.-A, 32(1), 45-54.
  15. Yang H., Lam W. H. (1996), Optimal Road Tolls under Conditions of Queueing and Congestion, Transp. Res. -A, 30(5), 319-332.
  16. Yang H., Yagar S. (1994), Traffic Assignment and Traffic Control in General Freeway-Arterial Corridor Systems, Transp. Res.-B, 28(6), 463-486. https://doi.org/10.1016/0191-2615(94)90015-9
  17. Yang H., Yagar S. (1995), Traffic Assignment and Signal Control in Saturated Road Networks, Transp. Res.-A, 29(2), 125-139. https://doi.org/10.1016/0191-2615(94)00030-4
  18. Yang H., Yagar S., Iida Y., Asakura Y. (1994), An Algorithm for the Inflow Control Problem on Urban Freeway Networks with User-Optimal Flows, Transp. Res.-B, 28(2), 123-139. https://doi.org/10.1016/0191-2615(94)90021-3
  19. Yu S. G., Jung C. M., Lee H. J. (2009), Comparison of Area Pricing and Cordon Pricing in General Equilibrium Models, J. Korean Soc. Transp., 27(2), Korean Society of Transportation, 145-155.
  20. Zhang X., Yang H. (2004), The Optimal Cordon-based Network Congestion Pricing Problem, Transp. Res.-B, 38(6), 517-537. https://doi.org/10.1016/j.trb.2003.08.001
  21. Zuo Z., Kanamori R., Miwa T., Morikawa T. (2010), Comparison of Cordon and Optimal Toll Points Road Pricing Using Genetic Algorithm, Traffic and Transportation Studies, 535-544.