DOI QR코드

DOI QR Code

보행에 대한 도시환경의 차이: 서울 도심을 중심으로

Effects of Urban Environments on Pedestrian Behaviors: a Case of the Seoul Central Area

  • 권대영 (서울대학교 농경제사회학부 지역정보전공) ;
  • 서동주 (서울대학교 농경제사회학부 지역정보전공) ;
  • 김소윤 (서울대학교 농경제사회학부 지역정보전공) ;
  • 김홍석 (서울대학교 농경제사회학부 지역정보전공)
  • Kwon, Daeyoung (Program in Regional Information, Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Suh, Tongjoo (Program in Regional Information, Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Kim, Soyoon (Program in Regional Information, Department of Agricultural Economics and Rural Development, Seoul National University) ;
  • Kim, Brian Hong Sok (Program in Regional Information, Department of Agricultural Economics and Rural Development, Seoul National University)
  • 투고 : 2014.10.01
  • 심사 : 2014.12.08
  • 발행 : 2014.12.31

초록

본 연구의 목적은 서울 도심지역의 행정동별 지역적 요소와 계획적 요소가 목적지로의 통행수단으로서 보행을 결정하는 것에 미치는 영향의 정도를 파악하고, 이에 대한 분석 결과 및 보행의 공간적 특성을 통해 지역별 특성을 파악하고자 함에 있다. 보행 결정에 영향을 미치는 요소들의 영향 정도를 파악하기 위해 본 연구에서는 전역적 차원의 회귀분석 모형인 최소자승모형을 사용하였고, 이와 더불어 다양한 공간통계 분석모형 중 지역별 보행특성을 기반으로 공간적 이질성을 고려하는 지리가중회귀모형의 적용을 통해 지역별 특성을 파악하고자 하였다. 전역적 차원의 회귀분석 결과 목적지로의 보행 선택에 영향을 주는 요소로는 지역적 요소 중 교통시설 지역 및 상업지역, 대학교 면적이, 계획적 요소 중에서는 교육.연구시설 및 계획시설 면적이 보행 선택에 정의 영향을 주었다. 마지막으로 지리가중회귀모형의 분석 결과를 통해 서울 도심지역 중 교통중심지 및 취약지, 상업 업무 중심지, 대학가 중심지, 연구시설 밀집지를 파악할 수 있었다. 본 연구의 결과를 통해 지역 및 공간적 이질성에 대한 이해 없이 진행되었던 기존의 계획 및 정책들에 지역적 특성이라는 정보를 제공함으로 이에 대한 반영의 여지를 주어 보다 지역발전 차원의 계획 수립에 기여할 수 있을 것이라는 점에 본 연구의 의의가 있을 것이라 여겨진다.

The objective of this study is to identify the causes of pedestrian volume path to the destination by investigating the influential levels of regional and planning features in the central area of Seoul. Regional characteristics can be classified from the result of the analysis and through the spatial characteristics of pedestrian volume. For global scale analysis, Ordinary Least Squares (OLS) regression is used for the degree of influence of each characteristics to pedestrian volume. For the local scale, Geographically Weighted Regression (GWR) is used to identify regional influential factors with consideration for spatial differences. The results of OLS indicate that boroughs with transportation facilities, commercial business districts, universities, and planning features with education research facilities and planning facilities have a positive effect on pedestrian volume path to the destination. Correspondingly, transportation hubs and congested areas, commercial and business centers, and university towns and research facilities in the Seoul central area can be identified through the results of GWR. The results of this study can provide information with relevance to existing plans and policies about the importance of regional characteristics and spatial heterogeneity effects on pedestrian volume, as well as significance in the establishment of regional development plans.

키워드

참고문헌

  1. Brunsdon C., Fortheringham S., Charlton M. (1998), Geographically Weighted Regression, Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443. https://doi.org/10.1111/1467-9884.00145
  2. Burnham K. P., Anderson D. R. (2002), Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Springer(New York, USA).
  3. Cervero R. (1996), Mixed Land-uses and Commuting: Evidence from the American Housing Survey, Transportation Research Part A: Policy and Practice, 30(5), 361-377. https://doi.org/10.1016/0965-8564(95)00033-X
  4. Cervero R., Duncan M. (2003), Walking Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area, American Journal of Public Health, 93(9), 1478-1483. https://doi.org/10.2105/AJPH.93.9.1478
  5. Charlton M., Fotheringham S. (2009), Geographically Weighted Regression, White Paper, National Centre for Geocomputation, National University of Ireland Maynooth.
  6. Fotheringham A. S., Brunsdon C., Charlton M. (2003), Geographically Weighted Regression: the Analysis of Spatially Varying Relationship, John Wiley & Sons(San Francisco, USA).
  7. Frank L. D., Sallis J. F., Saelens B. E., Leary L., Cain K., Conway T. L. et al. (2010), The Development of a Walkability Index: Application to the Neighborhood Quality of Life Study, British Journal of Sports Medicine, 44(13), 924-933. https://doi.org/10.1136/bjsm.2009.058701
  8. Greenwald M. J., Boarnet M. G. (2001), Build Environment as Determinant of Walking Behavior: Analyzing Nonwork Pedestrian Travel in Portland, Oregon, Transportation Research Record, 1780(1), 33-41. https://doi.org/10.3141/1780-05
  9. Handy S. L. (1996), Understanding the Link between Urban Form and Nonwork Travel Behavior, Journal of planning education and research, 15(3), 183-198. https://doi.org/10.1177/0739456X9601500303
  10. Kim H. J., Lee S. W. (2011), Determinants of 5 Major Crimes in Seoul Metropolitan Area: Application of Mixed GWR Model, Seoul Studies, 12(4), 137-155.
  11. Kockelman K. M. (1997), Travel Behavior as Function of Accessibility, Land Use Mixing, and Land Use Balance: Evidence from San Francisco Bay Area, Transportation Research Record, 1607(1), 116-125. https://doi.org/10.3141/1607-16
  12. Lee H. Y., Sim J. H. (2011), Geographic Information Science, Bobmunsa(Paju, Korea).
  13. Lee J. A., Koo J. H. (2013), The Effect of Physical Environment of Street on Pedestrian Volume: Focused on Central Business District(CBD, GBD, YBD) of Seoul, Journal of Korea Planners Association, 48(4), 269-286.
  14. Lee J., Wong D. W. (2001), Statistical Analysis with ArcView GIS, John Wiely & Sons.
  15. Lee K. H., Ahn K. H. (2008), An Empirical Analysis of Neighborhood Environment Affecting Residents' Walking: A Case Study of 12 Areas in Seoul, Journal of Architectural Institute of Korea: Planning Part, 24(6), 293-302.
  16. Lee S. W., Yun S. D., Park J. Y., Min S. H. (2006), Practice on Spatial Econometrics Models, Parkyoungsa(Seoul, Korea).
  17. Lee Y. S., Choo S. H., Kang J. M. (2013), Analysing Key Factors to Affect Change of Pedestrian Volume by Neighborhood Units in Seoul, Journal of Korea Planners Association, 48(4), 269-286.
  18. Malczewski J., Poetz A. (2005), Residential Burglaries and Neighborhood Socioeconomic Context in London, Ontario: Global and Local Regression Analysis, The Profession Geographer, 57(4), 516-529. https://doi.org/10.1111/j.1467-9272.2005.00496.x
  19. Mitchell A. (2005), The ESRI Guide to GIS Analysis: Spatial Measurements and Statistics, 2, ESRI Press(Redlands, USA).
  20. Park C. G., Cho S. K. (2014), A Study on the Optimization of Suwon City Bus Route using GWR Model, The Korea Society for Geospatial Information System, 22(1), 41-46. https://doi.org/10.7319/kogsis.2014.22.1.041
  21. Park J. Y., Park C. K. (2008), Estimating Interregional Trade Flows of South Korea, Journal of the Korean Regional Science Association, 24(2), 27-57.
  22. Pinjari A. R., Pendyala R. M., Bhat C. R., Waddell P. A. (2007), Modeling Residential Sorting Effects to Understand the Impact of the Built Environment on Commute Mode Choice, Transportation, 34(5), 557-573. https://doi.org/10.1007/s11116-007-9127-7
  23. Rodriguez D. A., Joo J. (2004), The Relationship between Non-motorized Mode Choice and the Local Physical Environment, Transportation Research Part D: Transport and Environment, 9(2), 151-173. https://doi.org/10.1016/j.trd.2003.11.001
  24. Seo J. L., Choi Y. M., Park S. H. (2011), An Empirical Study of Walking Amounts and Routes in Residential Neighborhood: Based on Seoul Bukchon Housewives' Walking Data Drawn from GPS, Journal of Architectural Institute of Korea: Planning Part, 27(9), 271-281.
  25. Wang J. F., Liu X., Christakos G., Liao Y. L., Gu X., Zheng X. Y. (2010), Assessing Local Determinants of Neural Tube Deffects in the Heshun Region, Shanzi Province, China, BMC Public Health, 10(1), 52. https://doi.org/10.1186/1471-2458-10-52
  26. Yu D. (2007), Modeling Owner-occupied Single-family House Values in the City of Milwaukee: A Geographically Weighted Regression Approach, GIScience & Remote Sensing, 44(3), 267-282. https://doi.org/10.2747/1548-1603.44.3.267
  27. Yun N. Y., Choi C. G. (2013), Relationship between Pedestrian Volume and Pedestrian Environmental Factors on the Commercial Streets in Seoul, Journal of Korea Planners Association, 48(4), 135-150.
  28. Zhang M. (2004), The Role of Land Use in Travel Mode Choice: Evidence from Boston and Hong Kong, Journal of the American Planning Association, 70(3), 344-360. https://doi.org/10.1080/01944360408976383