DOI QR코드

DOI QR Code

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun (Department of Civil & Environmental Engineering, Rice University) ;
  • Nagarajaiah, Satish (Department of Civil & Environmental Engineering and Department of Mechanical Engineering & Material Science, Rice University)
  • 투고 : 2014.03.10
  • 심사 : 2014.03.24
  • 발행 : 2014.03.25

초록

A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

키워드

참고문헌

  1. Back, A.D., Weigend, A.S. and Weigend, A.S. (1997), "A first application of independent component analysis to extracting structure from stock returns", Int. J. Neur. Syst., 8(4), doi: 10.1142/S0129065797000458.
  2. Bernal, D. (2002), "Load vectors for damage localization", J. Eng. Mech. - ASCE, 128(1), 7-14. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(7)
  3. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441.
  4. Cardoso, J.F. (1989), "Source separation using higher order moments", Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, May 1989. ICASSP-89.
  5. Cherry, E.C. (1953), "Some experiments on the recognition of speech, with one and with two ears", J. Acoust. Soc. Am., 25(5), 975-979. https://doi.org/10.1121/1.1907229
  6. Comon, P. (1994), "Independent component analysis, a new concept?", Signal Process., 36(3), 287-314. https://doi.org/10.1016/0165-1684(94)90029-9
  7. Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", P. Roy. Soc. London. Series A: Math. Phys. Eng. Sci., 365(1851), 303-315.
  8. Hazra, B., Sadhu, A., Roffel, A., Paquet, P. and Narasimhan, S. (2012), "Underdetermined blind identification of structures by using the modified cross-correlation method", J. Eng. Mech. - ASCE, 138(4), 327-337. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000328
  9. Huang, C., Nagarajaiah, S. and Varadarajan, N. (2012), "Fatigue estimation in deepwater risers based on wavelets and second order blind identification", Proceedings of the Ocean, Offshore and Arctic Engineering (OMAE).
  10. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis", P. Roy. Soc. London. Series A: Math. Phys. Eng. Sci., 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
  11. Hyvarinen, A. and Oja, E. (2000), "Independent component analysis: algorithms and applications", Neural Networks, 13(4-5), 411-430. https://doi.org/10.1016/S0893-6080(00)00026-5
  12. Juang, J.N. and Pappa, R.S. (1985), "An eigensystem realization algorithm for modal parameter identification and model reduction", J. Guid. Control Dynam., 8(5), 620-627. https://doi.org/10.2514/3.20031
  13. Jung, T., Makeig, S. and J.Bell, A. (1996), "Independent component analysis of electroencephalographic data", Adv. Neural Inform. Process. Syst, 145-151.
  14. Jutten, C. and Herault, J. (1991), "Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture", Signal Processing, 24(1), 1 -10. https://doi.org/10.1016/0165-1684(91)90079-X
  15. Kerschen, G., Poncelet, F. and Golinval, J.C. (2007), "Physical interpretation of independent component analysis in structural dynamics", Mech. Syst. Signal Pr., 21(4), 1561- 1575. https://doi.org/10.1016/j.ymssp.2006.07.009
  16. Ko, J. and Ni, Y. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12), 1715- 1725. https://doi.org/10.1016/j.engstruct.2005.02.021
  17. Lewicki, M.S. (1994), "Bayesian modeling and classification of neural signals", Neural Comput., 6(5), 1005-1030. https://doi.org/10.1162/neco.1994.6.5.1005
  18. Lynch, J.P., Law, K.H., Kiremidjian, A.S. and Carryer, E. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(3), 1-16. https://doi.org/10.12989/sem.2004.17.1.001
  19. McNeill, S. and Zimmerman, D. (2008), "A framework for blind modal identification using joint approximate diagonalization", Mech. Syst. Signal Pr., 22(7), 1526 - 1548. https://doi.org/10.1016/j.ymssp.2008.01.010
  20. Mufti, A.A., Tadros, G. and Jones, P.R. (1997), "Field assessment of fibre-optic bragg grating strain sensors in the confederation bridge", Can. J. Civil Eng., 24(6), 963-966. https://doi.org/10.1139/l97-080
  21. Nagarajaiah, S. and Basu, B. (2009), "Output only modal identification and structural damage detection using time frequency & wavelet techniques", Earthq. Eng. Eng. Vib., 8, 583-605. https://doi.org/10.1007/s11803-009-9120-6
  22. Pandey, A. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3 -17. https://doi.org/10.1006/jsvi.1994.1002
  23. Pandey, A., Biswas, M. and Samman, M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321- 332. https://doi.org/10.1016/0022-460X(91)90595-B
  24. Poncelet, F., Kerschen, G., Golinval, J.C. and Verhelst, D. (2007), "Output-only modal analysis using blind source separation techniques", Mech. Syst. Signal Pr., 21(6), 2335 -2358. https://doi.org/10.1016/j.ymssp.2006.12.005
  25. Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monit., 11(4), 349-368. https://doi.org/10.1002/stc.48
  26. Stubbs, N. and Kim J.T. (1996), "Damage localization in structures without baseline modal parameters", AIAA J., 34(8), 1644-1649, Read More: http://arc.aiaa.org/doi/abs/10.2514/3.13284.
  27. Tugnait, J. (1995), "Blind equalization and estimation of digital communication fir channels using cumulant matching", IEEE T. Commu , 43(234), 1240 -1245. https://doi.org/10.1109/26.380160
  28. Walden, A.T. (1985), "Non-gaussian reflectivity, entropy, and deconvolution", Geophysics, 50(12), 2862-2888. https://doi.org/10.1190/1.1441905

피인용 문헌

  1. Damage Detection in Bridge Structure Using Vibration Data under Random Travelling Vehicle Loads vol.628, 2015, https://doi.org/10.1088/1742-6596/628/1/012044
  2. Output-Only Damage Detection of Steel Beam Using Moving Average Filter vol.2018, 2018, https://doi.org/10.1155/2018/2067680
  3. Application of the Random Decrement Technique in Damage Detection under Moving Load vol.8, pp.5, 2018, https://doi.org/10.3390/app8050753
  4. A performance-based design method for chloride-induced cover cracking of RC structures vol.20, pp.5, 2014, https://doi.org/10.12989/cac.2017.20.5.573
  5. Beam Damage Detection Under a Moving Load Using Random Decrement Technique and Savitzky–Golay Filter vol.20, pp.1, 2014, https://doi.org/10.3390/s20010243
  6. Multi-variate Empirical Mode Decomposition (MEMD) for ambient modal identification of RC road bridge vol.7, pp.4, 2014, https://doi.org/10.12989/smm.2020.7.4.283