Acknowledgement
Supported by : Florida Department of Transportation (FDOT)
References
- Aktan, A.E., Catbas, F.N., Grimmelsman, K.A. and Tsikos C.J. (2000), "Issues in infrastructure health monitoring for management", J. Eng. Mech. - ASCE, 126(7), 711-724. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(711)
- Barai, S.V. and Pandey, P.C. (1995), "Vibration signature analysis using artificial neural networks", J. Comput. Civil Eng., 9(4) 259-265. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(259)
- Castejon, C., Lara, O. and Garcia-Prada, J.C. (2010), "Automated diagnosis of rolling bearings using mra and neural networks", Mech. Syst. Signal Pr., 24(1), 289-299. https://doi.org/10.1016/j.ymssp.2009.06.004
- Catbas, F.N., Zaurin, R., Susoy, M. and Gul, M. (2007), Integrative information system design for florida department of transportation-a framework for structural health monitoring of movable bridges, Final Report to Florida Department of Transportation Contract No. BD-548-23.
- Catbas, F.N., Gul, M., Zaurin, R., Gokce, H.B., Terrell, T., Dumlupinar, T. and Maier, D. (2010), Long term bridge maintenance monitoring demonstration on a movable bridge, Final Report to Florida Department of Transportation Contract No. BD548-RPWO#11.
- Catbas, F.N., Gokce, H.B. and Gul, M. (2012), "Nonparametric analysis of structural health monitoring data for identification and localization of changes: Concept, lab, and real-life studies", Struct. Health Monit., 11(5), 613-626. https://doi.org/10.1177/1475921712451955
- Catbas, F.N., Gul, M., Gokce, H.B., Zaurin, R., Frangopol, D.M., and Grimmelsman, K.A. (2014), "Critical issues, condition assessment and monitoring of heavy movable structures: emphasis on movable bridges", Struct. Infrastruct. E., 10(2), 261-276. https://doi.org/10.1080/15732479.2012.744060
- Cigizoglu, H.K. and Kisi, O. (2004), "Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data", Nordic Hydrology, 36(1), 49-64.
- Dayhoff, J.E. (1990), Neural network architectures: an introduction Van Nostrand Reinhold Co. New York, NY, USA.
- El-Bakyr, M.Y. (2003), "Feed forward neural networks modeling for k-p interactions", Chaos Solution. Fract., 18(5), 995-1000. https://doi.org/10.1016/S0960-0779(03)00068-7
- Fang, X., Luo, H. and Tang, J. (2005), "Structural damage detection using neural network with learning rate improvement", Comput. Struct., 83(25-26), 2150-2161. https://doi.org/10.1016/j.compstruc.2005.02.029
- Frankel, W. (1882), Der Bruckenbau-BeweglicheBrucken (Eds., Schaffer, T. and Sonne, E.), Verlag Wilhelm Engelmann, Leipzig (in German).
- Furuhashi, T. and Hayashi, I. (1996), Fuzzy neural network, Asakura Publishing, Japan.
- Gonzalez, M.P. and Zapico, J.L. (2008), "Seismic damage identification in buildings using neural networks and modal data", Comput. Struct., 86(3-5), 416-426. https://doi.org/10.1016/j.compstruc.2007.02.021
- Gul, M., Gokce, H.B. and Catbas, F.N. (2011), Long-term Maintenance Monitoring Demonstration on a Movable Bridge, Final Report to Florida Department of Transportation, Contract No. BDK78 977-07.
- Gul, M., Catbas, F.N. and Hattori, H. (2013), "Image-based monitoring of movable bridge open gear for condition assessment and maintenance decision making", J. Comput. Civil Eng., 10.1061/(ASCE)CP.1943-5487.0000307 (2013).
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feed forward networks with the Marquardt algorithm", IEEE T. Neural Networ., 5(6), 989-993. https://doi.org/10.1109/72.329697
- Koglin, T.L. (2003), Movable bridge engineering, John Wiley and Sons
- Kowalski, C.T. and Kowalska, T.O. (2003), "Neural networks application for induction motor faults diagnosis", Math. Comput. Simulat., 63(3-5), 435-448. https://doi.org/10.1016/S0378-4754(03)00087-9
- Li, B., Chow, M.Y., Tipsuwan, Y. and Hung, J.C. (2000), "Neural-network-based motor rolling bearing fault diagnosis", IEEE T. Ind. Electron., 47(5), 1060-1069. https://doi.org/10.1109/41.873214
- Maier, H.R. and Dandy, G.C. (2000), "Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications", Environ. Modell. Softw., 15(1), 101-124. https://doi.org/10.1016/S1364-8152(99)00007-9
- Rafiee, J., Arvania, F., Harifib, A. and Sadeghic, M.H. (2007), "Intelligent condition monitoring of a gearbox using artificial neural network", Mech. Syst. Signal Pr., 21(4), 1746-1754. https://doi.org/10.1016/j.ymssp.2006.08.005
- Rajakarunakaran, S., Venkumar, P., Devaraj, D. and Rao, K.S.P. (2008), "Artificial neural network approach for fault detection in rotary system", Appl. Soft Comput., 8(1), 740-748. https://doi.org/10.1016/j.asoc.2007.06.002
- Rao, A.R. and Kumar, B. (2007), "Predicting re-aeration rates using artificial neural networks in surface aerators", Int. J. Appl. Environ. Sci., 2(1), 155-166.
- Samanta, B. and Al-Balushi, K.R. (2003), "Artificial neural network based fault diagnostics of rolling element bearings using time-domain features", Mech. Syst. Signal Pr., 17(2), 317-328. https://doi.org/10.1006/mssp.2001.1462
- Sohn, H., Worden, K. and Farrar, C.R. (2002), "Statistical damage classification under changing environmental and operational conditions", J. Intel. Mat. Syst. Str., 13(9), 561-574. https://doi.org/10.1106/104538902030904
- Uchikawa, Y. (1995), Fuzzy neural system, Nikkan Kogyo Publishing, Japan.
- Wang, L.X. and Mendel, J.M. (1992), "Back-propagation fuzzy systems as nonlinear dynamic system identifiers", Proceedings of the IEEE International Conference on Fuzzy System, 1409-18 San Diego, CA.
- Worden, K., Manson, G. and Fieller, N.R.J. (2000), "Damage detection using outlier analysis", J. Sound Vib., 229(3), 647-667. https://doi.org/10.1006/jsvi.1999.2514
- Yetilmezsoy, K. and Demirel, S. (2008), "Artificial neural network (ann) approach for modeling of pb(ii) adsorption from aqueous solution by antep pistachio (pistaciavera l.) shells", J. Hazard. Mater., 153(3), 1288-1300. https://doi.org/10.1016/j.jhazmat.2007.09.092
- Yeung, W.T. and Smith, J.W. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006
Cited by
- A Novel Dense Full-Field Displacement Monitoring Method Based on Image Sequences and Optical Flow Algorithm vol.10, pp.6, 2014, https://doi.org/10.3390/app10062118
- Displacement Identification by Computer Vision for Condition Monitoring of Rail Vehicle Bearings vol.21, pp.6, 2014, https://doi.org/10.3390/s21062100