DOI QR코드

DOI QR Code

Uptake and Accumulation of Arsenate on Lettuce (Lactuca sativa L.) Grown in Soils Mixed with Various Rates of Arsenopyrite Gravel

유비철석 입자 혼합 토양내 상추(Lactuca sativa L.)의 비소이온 흡수와 축적

  • Shim, Ho-Young (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Lee, Kyo-Suk (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Lee, Dong-Sung (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Jeon, Dae-Sung (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Shin, Ji-Su (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Kim, Soo-Bin (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Cho, Jin-Woong (College of Agricultural and Life Sciences, Chungnam Natl. University) ;
  • Chung, Doug-Young (College of Agricultural and Life Sciences, Chungnam Natl. University)
  • 심호영 (충남대학교 농업생명과학대학) ;
  • 이교석 (충남대학교 농업생명과학대학) ;
  • 이동성 (충남대학교 농업생명과학대학) ;
  • 전대성 (충남대학교 농업생명과학대학) ;
  • 신지수 (충남대학교 농업생명과학대학) ;
  • 김수빈 (충남대학교 농업생명과학대학) ;
  • 조진웅 (충남대학교 농업생명과학대학) ;
  • 정덕영 (충남대학교 농업생명과학대학)
  • Received : 2014.09.13
  • Accepted : 2014.10.13
  • Published : 2014.12.31

Abstract

Arsenic (As) is nonessential element toxic to plants. In Korea little is not only known about the extent of actual anthropogenic sources and inputs of arsenic to the agricultural land which plays a active role as a sink, but also systematic research on arsenic as an toxic element entering the food chain via the soil-plant pathway has not been investigated in the fields and greenhouses besides in few places of abandoned mining sites. Therefore, it is important to focus on the effect of As-contaminated soils on As uptake and biomass production of lettuce plants. In this study, As concentrations in the soil and accumulation of As in lettuce transferred by As uptake from soils were investigated. To do this, soil which was mixed with various rates of arsenopyrite gravels containing arsenic from 0 to 100% was packed into a round plastic pot. Then, 10 days old vegetable crops of chinese cabbage and lettuce after germination were transplanted into a pot. Growth of lettuce was observed for four weeks with one week interval. All experiments were done by triplicate. The results showed that the growth rates for number of leaves, width and length of the crop plants were retarded with increasing amount of gravel mixed due to increasing bioavailable amount of arsenate with increasing rate of gravel in soils. With these results, we conclude that the bioavailable amount of arsenate can influence the growth of lettuce.

비소 함유 골재를 토양개량제로 사용하였을 경우 광미에 포함된 유효태 또는 광물로 존재하는 비소가 용출되어 식물생육에 미치는 영향을 조사하기 위해 실험 한 결과를 요약하면 다음과 같다. 1. 중세사에서 자갈크기의 유비철석 입자시료에서는 비소가 약 $95.28mg\;kg^{-1}$ 정도 함유된 있으나 밭토양 시료에서는 비소가 없는 것으로 조사되었다. 2. 상추 재배토양에 함유된 양을 기준으로 생물학적 이용가능 비소와 그리고 상추로 전이된 비소의 양의 비율을 비교한 결과 토양으로부터 생물학적 이용 가능 비소 형태로 전환된 비소의 비율은 최저 2.20%에서 최대 3.31%로 조사되었다. 3. 상대적 생물학적 이용가능 비소와 상추내 비소 지수는 정의 상관관계를 보이고 있는 반면 이의 비소 지수가 증가함에 따라 상추의 엽장, 엽폭, 엽수, 생체중과 건물중 모두 반비례로 감소하는 것으로 조사되었다. 4. 입자직경이 토양보다 큰 모래 또는 자갈크기의 비소를 포함한 자갈이 혼합량이 증가됨에 따라 식물가용수분 함량이 감소될 뿐만 아니라 상추가 자라는 동안 비소를 포함된 유비철석입자부터 비소가 토양내로 용존되어 작물체내로 전이기 증가되어 상추 엽장, 엽폭 엽수, 생체중, 그리고 건물중에 영향을 준 것으로 판단한다.

Keywords

References

  1. Allison, L. E., 1965. Organic carbon, in: Black C.A. (Eds), Methods of Soil Analysis. Part II. Am. Soc. Agron. Inc. Publ., Madison, WI, 1367-1376.
  2. Asta, M. P., C. Jordi, A. Carlos, A Patricia, and D. G. Giovanni. 2010. Arsenopyrite dissolution rates in O2-bearing solutions Chemical Geology 273 (2010) 272-285 https://doi.org/10.1016/j.chemgeo.2010.03.002
  3. Williams, M., 2001. Arsenic in mine waters: an international study. Environ. Geol. 40 : 267-278. https://doi.org/10.1007/s002540000162
  4. Breed, A. W., S. T. L. Harrison, and G. S. Hansford. 1997. A preliminary investigation of the ferric leaching of a pyrite/ arsenopyrite flotation concentrate. Miner. Eng. 10 : 1023-1030. https://doi.org/10.1016/S0892-6875(97)00081-2
  5. Casiot, C., M. Leblanc, O. Bruneel, J. C. Personne, K. Koffi, and F. O. Elbaz-Poulichet. 2003. Geochemical processes controlling the formation of As-rich waters within a tailings impoundment (Carnoules, France). Aquat. Geochem. 9 : 273-290. https://doi.org/10.1023/B:AQUA.0000028985.07557.39
  6. Craw, D., D. Falconer, and J. H. Youngson. 2003. Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem. Geol. 199 : 71-82. https://doi.org/10.1016/S0009-2541(03)00117-7
  7. Frau, F., and C. Ardau. 2003. Geochemical controls on arsenic distribution in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining. Appl. Geochem. 18 : 1373-1386. https://doi.org/10.1016/S0883-2927(03)00057-X
  8. Jeong, S. k., J. S. An, Y. J. Kim, G. H. Kim, S. I. Choi, and K. P. Nam. 2011. Study on Heavy Metal Contamination Characteristics and Plant Bioavailability for Soils in the Janghang Smelter Area. J. Soil & Groundwater Env. Vol. 16(1) : 42-50. https://doi.org/10.7857/JSGE.2011.16.1.042
  9. Jung, G. B., W. I. Kim, J. S. Lee, J. D. Shin, J. H. Kim, and J. T. Lee. 2006. Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex. Korean J. Environ. Agic. Vol. 25(4) : 323-330. https://doi.org/10.5338/KJEA.2006.25.4.323
  10. Kim, J. Y., J. H. Lee, K. Anitha, D. W. Kang, and M. J. Kim, J. H. Yoo, D. H. Kim, Y. J. Lee, and W. I. Kim. 2012. Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products. Korean J. Environ. Agic. Vol. 31(4) : 300-307. https://doi.org/10.5338/KJEA.2012.31.4.300
  11. Lee, J. H., J. Y. Kim, W. R. Go, E. J. Jeong, K. Anitha, G. B. Jung, D. H. Kim, and W. I. Kim. 2012. Current research trends for heavy metals of agricultural soils and crop uptake in Korea. Korean J. Environ. Agic. Vol. 31(1) : 75-95. https://doi.org/10.5338/KJEA.2012.31.1.75
  12. Lazareva, E. V., O. V. Shuvaeva, and V. G. Tsimbalist. 2002. Arsenic speciation in the tailings impoundment of a gold recovery plant in Siberia. Geochem. Explor. Environ. Anal. 2 : 263-268. https://doi.org/10.1144/1467-787302-030
  13. Lee, M. H., T. S. Kim, M. S. Lee, Y. J. An, J. Y. Lee, J. Y. Yang, H. M. Lee, M. J. Kim, J. W. Park, K. K. Lee, S. W. Jung, K. P. Nam, H. L. Roo, S. I. Choi, and I. L. Ko. 2009. Risk Assessment of Soil. Dongwha Technology, Korea. p. 116-118.
  14. Lee, P. K., M. J. Kang, S. H. Choi, and J. C. Touray. 2005. Sulphide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl. Geochem. 20 : 1687-1703. https://doi.org/10.1016/j.apgeochem.2005.04.017
  15. McGuire, M., J. F. Banfield, and R. J. Hamers. 2001. Quantitative determination of elemental sulphur at the arsenopyrite surface after oxidation by ferric iron: mechanistic implications. Geochem. Trans. 2 : 25-29. https://doi.org/10.1186/1467-4866-2-25
  16. McKibben, M. A., B. A. Tallant, and J. K. D. Angel. 2008. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Appl. Geochem. 23 : 121-135. https://doi.org/10.1016/j.apgeochem.2007.10.009
  17. NAIST, 2000. Method of soil and plant analyses, National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  18. Pfeifer, H. R., A. Haussermann, J. C. Lavanchy, and W. Halter. 2007. Distribution and behavior of arsenic in soils and waters in the vicinity of the former gold-arsenic mine of Salanfe, Western Switzerland. J. Geochem. Explor. 93 : 121-134. https://doi.org/10.1016/j.gexplo.2007.01.001
  19. Ruitenberg, R., G. S. Hansford, M. A. Reuter, and A. W. Breed. 1999. The ferric leaching kinetics of arsenopyrite. Hydrometallurgy 52 : 37-53. https://doi.org/10.1016/S0304-386X(99)00007-9
  20. Smedley, P. L., and D. G. Kinniburgh. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17 : 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  21. Tallant, B. A., and M. A. McKibben. 2005. Arsenic mineral kinetics: arsenopyrite oxidation. Geochim. Cosmochim. Acta 69, A820.
  22. Yu, Y., Y. Zhu, Z. Gao, C. H. Gammons, and D. Li. 2007. Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45. Environ. Sci. Technol. 41 : 6460-6464. https://doi.org/10.1021/es070788m
  23. Yu, Y., Y. Zhu, A. E. Williams-Jones, Z. Gao, and D. Li,, 2004. A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl. Geochem. 19 : 435-444. https://doi.org/10.1016/S0883-2927(03)00133-1
  24. Walker, F. P., M. E. Schreiber, and J. D. Rimstidt. 2006. Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim. Cosmochim. Acta 70 : 1668-1676. https://doi.org/10.1016/j.gca.2005.12.010
  25. Welch, A. H., and K. G. E. Stollenwerk. 2003. Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers.
  26. Zeng, F., S. Ali, H. Zhang, Y. Ouyang, B. Qui, F. Wu, and G. Zhang. 2012. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants, Environ. Pollut. VOL59(1) : 84-91.