DOI QR코드

DOI QR Code

The Growth Phase and Yield Difference of Kenaf (Hibiscus cannabinus L.) on Soil Salinity in Reclaimed Land

간척지에서 토양 염농도별 케나프의 생육반응 및 수량성

  • Kang, Chan-Ho (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Choi, Weon-Young (Department of rice and winter cereal crop, NICS, RDA) ;
  • Yoo, Young-Jin (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Choi, Kyu-Hwan (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kim, Hyo-Jin (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Song, Young-Ju (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Kim, Chung-Kon (Jeollabuk-do Agricultural Research and Extension Services)
  • Received : 2014.05.21
  • Accepted : 2014.10.29
  • Published : 2014.12.31

Abstract

Kenaf (Hibiscus cannabinus L.) was recognized as a potential source of forage. To reduce the production cost, we should insure large cultivation area. The one of the best candidate places to expand the useful kenaf production was 'Saemangeum' reclaimed land. To confirm the possibility of kenaf growth in reclaimed land, we seeding and cultivated the kenaf in 'Saemangeum'. The germination percentage of kenaf on 5.0 dS/m soil salinity was 18%. It is less 66% than that of 4.0 dS/m soil salinity and at 6.0 dS/m, the germination percentage of kenaf was under 10%. The growth and development of kenaf in reclaimed land grew worse with increasing soil salinity. The stem diameter which the most important factor that decide the value and yield of product was upper 2.6 cm when soil salinity maintained under 4.0 dS/m, but if soil salinity marked over 4.0 dS/m, the stem diameter of kenaf was drop under 2.0 cm and it deteriorate the number of leaves per plant by 20~46%. The necrosis on older tip and marginal leaves were noted approximately first month after seeding which was correlated directly with the salinity levels of reclaimed soil. Reduction of total yield was coincide with increasing levels of EC. If soil salinity over 5.0 dS/m, the amount of decreased by soil salinity was 51% than that of non-reclaimed region. The allowable soil salinity level of which could be maintained within 20% reduction rate was 4.2 dS/m. Consequently kenaf can be grown successfully with moderately saline soil condition. However, salt levels in excess of 4.2 dS/m severely have restricted plant growth and development and will result in significant yield reduction.

우수한 사료자원으로 평가되는 케나프의 생산단가를 낮추기 위하여 새만금 간척지 시험포에서 염농도 단계별 생육 및 수량을 관찰한 결과 케나프는 중.상정도의 내염성을 보유한 작물로 평가할 수 있으며 충분한 제염이 이루어진다고 하면 간척지에서의 재배 가능성도 충분할 것으로 평가할 수 있었다. 염농도별 케나프의 발아력을 조사한 결과 토양 염농도가 4.0 dS/m (=0.26%) 일 때 84%이던 케나프 발아율이 5.0 dS/m (=0.32%) 에서는 18%로 급격히 떨어졌으며 6.0 dS/m (=0.39%) 에서는 발아율이 10%를 넘지 못하였다. 또한 생육 상황도 토양 염농도에 비례하여 급격히 떨어졌는데 케나프는 줄기직경을 2.6 cm 이상으로 유지할 수 있을 경우 엽수가 유의할 수준으로 늘어나고 줄기부분에 대한 상대적 무게비율이 증가하는 결과를 얻을 수 있었다. 이는 잎의 분열을 촉진시킬 수 있는 충분한 생장량 확보가 줄기직경 2.6 cm 이상에서부터 가능하다는 것을 의미하는데 새만금에서는 토양 염농도 4.0 dS/m (=0.26%) 이하에서는 케나프의 줄기직경을 2.6 cm 이상으로 유지하는 것이 가능하였으나 염농도가 5.0 dS/m (=0.32%)를 넘어서게 되면 줄기직경이 2.0 cm 이하로 엽수도 20~46% 감소하였다. 생육장해는 파종 후 1개월 경과부터 본격적으로 나타나기 시작하였는데 엽 정단이 고사하고 주변 잎 들이 급격하게 황화 낙엽되는 현상이 발생하였다. 케나프의 토양 염농도에 대한 수량성을 분석한 결과 토양 염농도 4.0 dS/m (=0.26%) 까지는 비간척지에 비해 수량이 최대 19% 하락하였으나 염농도간 차이는 크지 않았다. 그러나 토양 염농도가 4.0 dS/m (=0.26%)를 넘어서는 5.0 dS/m (=0.32%) 에서는 비간척지의 51% 수준을 유지하는데 그쳤으며 토양 염농도 4.0 dS/m (=0.26%)일 때의 수량에 비해서도 38% 감소하였다. 통계분석을 통하여 간척지에서 수량성 감소를 80% 이내로 유지 할 수 있는 토양 염농도를 산출해본 결과 토양 염농도가 4.2 dS/m이내로 유지될 경우 케나프의 생산성은 80% 이상을 유지할 수 있었다.

Keywords

References

  1. Ahlgren, G., H. Dotzenko, and A. Dotzenko. 1950. Kenaf a potential new crop. J. New York Bot. Gard. 51 : 77-80.
  2. Ahmed, H. G., F. A. Iram, F. M. Anjum, A. S. Hamdy, F. M. Khaled, and F. Amr. 2010. The effect of pH on flavor formation and antioxidant activity of amino acid and sugars interaction products. JASMR, 5(2) : 131-139.
  3. Bhardwaj, H. L., M. Rangappa, and C. L. III. Webber. 1995. Potential of kenaf as a forage. Proc. Int. Kenaf Assoc. Vonf. Irving, TX. 7 : 95-103.
  4. Birasuren, B., N. Y. Kim, L. Jeon, and M. R. Kim. 2013. Evaluation of the Antioxidant Capacity and Phenolic Content of Agriophyllum pungens Seed Extracts from Mongolia. Prev. Nutr. Food Sci. 18(3) : 188-195. https://doi.org/10.3746/pnf.2013.18.3.188
  5. Bledsoe, V. K. 1999. Kenaf : Alternative fiber. Contryside Pub. Texas, USA.
  6. Cahilly, G. M. 1967. Potential value of kenaf tops as a livestock feedstuff. Proc. first conf. kenaf for pulp. Gainsville, Fl. p 48 (Abstr.).
  7. Cho, Y. J., S. S. Chun, J. H. Kim, and S. J. Yoon. 2005. Inhibition against Helicobacer pylori and biological activities by Rue (Rute graveolens L.) extracts. J. korean Soc. Food Sci. Nutr. 34(4) : 460-465. https://doi.org/10.3746/jkfn.2005.34.4.460
  8. Clark, T. F. and I. A. Wolff. 1969. A search for new fiber crops, XI. Compositional characteristics of illinois kenaf at several population densities and maturities. TAPPI 52 : 2606-2116.
  9. Claussen Wilfried. 2005. Proline as a measure of stress in tomato plants. Plant Science 168 : 241-248. https://doi.org/10.1016/j.plantsci.2004.07.039
  10. Curtis, P. S., and A. Lauchli. 1985. Responses of kenaf to salt stress: Germination and vegetative growth. Crop Sci. 25 : 944-949. https://doi.org/10.2135/cropsci1985.0011183X002500060011x
  11. Dao, T. H., W. Lonkerd, S. Rao, R. Meyer, and L. Pellack. 1989. Kenaf in a semi-arid environment and forage quality in Oklahoma. Argon, Abstr. p. 130.
  12. Evans, D. W., and A. H. Hang. 1993. Kenaf in irrigated central washington. p409-410 : J. Janick and J. E. Simon(eds.), New crops. Wiley, New York.
  13. Hollowell, J. E., B. S. Baldwin, and D. L. Lang. 1996. Evaluation of kenaf as a potential forage for the southern Unite States. Proc. 8th Ann. Inter. Kenaf Vonf. 34-38.
  14. Hurse, L., and R. E. Bledsoe. 1989. Kenaf grown as a forage crop in Northeast Texas. Proc. Assoc. Advancement of Industria Crops Peoria, IL. p. 13 (Abstr.).
  15. Kang, M. H., C. S. Choi, Z. S. Kim, H. K. Chung, K. S. Min, C. G. Park, and H. W. Park. 2002. Antioxidative activities of ethanol extract prepared form leaves, seed, branch, and aerial part of Crotalaria sessiflora. L. Korean. J. Food Sci. Technol. 34(4) : 1098-1102.
  16. Killinger, G. B. 1964, Kenaf a potential paper-pulp for Florida. second Int. Kenaf Conf. Palm Beach, FL. p. 54-57.
  17. Killinger, G. B. 1967, Potential uses of Kenaf (Hibiscus cannabinus L.). Fla. Soil Crop Sci. Soc. Proc. 27 : 4-11.
  18. Killinger, G. B. 1969, Kenaf(Hibiscus cannabinus L.) a multi-use crop. Argon. J. 61 : 734-736.
  19. Kim, B. G., E. R. Lee, and J. H. Ahn. 2012. Analysis of Flavonoid Contents and Expression of Flavonoid Biosynthetic Genes in Populus euramericana Guinier in Response to Abiotic Stress. J. Korean Soc. Appl. Biol. Chem. 55 : 141-145.
  20. Kim, S. M., Y. J. Jung, C. H. Pan, and B. H. Um. 2010. Antioxidant Activity of Methanol Extracts from the Genus Lespedeza. J Korean Soc Food Sci Nutr 39(5) : 769-775. https://doi.org/10.3746/jkfn.2010.39.5.769
  21. Lee, S. H., S. H. Yoo, S. I. Seol, Y. An, Y. S. Jung, and S. M. Lee. 2000. Assessment of salt damage for upland-crops in DAE-Ho reclaimed soil. Korean Journal of Environmental Agriculture 19(4) : 358-363.
  22. Lee S. O., H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Uilung Island. Korea.
  23. Lim, T. K., H. W. Park, Y. S. Hwang, and J. E. Choi. 2007. Potential role of polyphenolics and polyphenol oxidase on the induction of browning in ginseng roots. Korean J. Crop. Sci. 52(3) : 289-295.
  24. Maas, E. V. and G. J. Hoffman. 1977. Crop salt tolerance-current assassment. J. Plant Physiol. 13 : 553-565.
  25. Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P. C. Struik, and Y. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS 4(8) : 580-585.
  26. Marklund, S. and G. Marklund. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and convenient assay for superoxide dismmutase. Eur. J. Biochem. 47. p 468.
  27. Miyazaki, A., W. Agata, F. Kubota, Y. Matsuda, and X. Song. 1995. Bio-production and water cleaning by plant growth with floating culture system. II. Water cleaning effects by the growth of several plant species. 6th inter. Conf. of thr conservation and management of lakes Kasumigaura. 95(1) : 560-563.
  28. Park, M. H., C. Choi, G. M. Son, B. J. An, and M. J. Bae. 2000. Effects of polyphenol compounds from Persimmon leaves (Diospyros kaki folium) on antiallergy. J. korean Soc. Food Sci. Nutr. 29(1) : 116-119.
  29. Phillips, W. A., S. Rao, and T. Dao. 1989. Nutritive value of immature whole plant kenaf and mature kenaf tops for growing rumminsnts. Proc. Assoc. Advancement of industrial Crops. Peoria, IL. p. 17-22.
  30. Powell, G. W. and J. M. Wing. 1967. Kenaf as silage. Proc. First Conf. kenaf for pulp. Gainsville, Fl. p. 49 (Abstr.).
  31. RRI. 2006. Agricultural complex development for upland & horticultural crops in the saemangeum reclaimed farmland. Res. Rtp. Rural Research Institute. p 1-504, Korea Rural Community & Agriculture Corporation.
  32. RRI. 2007. Development method of the future agriculture complex in reclaimed land. Res. Rtp. Rural Research Institute. p 1-400, Korea Rural Community & Agriculture Corporation.
  33. Ruenroengklin N., X. W. Duan, B. Yang, K. N. Prasad, G. P. Cheng, J. Zhong, and Y. M. Jiang. 2007. Effects of various temperature and pH values on antioxidant activity of Litchi antioxidants. Europe-Asia Symposium on Quality Management in Postharvest Systems.
  34. Son, J. G. 1994. Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands. Journal of the Korean Society of Agricultural Engineers 36(2) : 96-110.
  35. Suriyajantratong, W., R. E. Tucker, R. E. Sigafus, and G. E. Mitchell Jr. 1973. Kenaf and rice straw for sheep. J. Anim. Sci. 37 : 1251-1254.
  36. Swingle, R. S., A. R. Urias, J. C. Doyle, and R. L. Voigt. 1978. Chemical composition of kenaf forage and its digestibility by lambs and in vitro. J. Anim. Sci. 46 : 1346-1350.
  37. Van Genuchten, M. T. and G. J. Hoffman. 1984. Analysis of crop salt tolerance. p 255-271. In: I shainberg and J. Shalhevet (eds.). soil salinity under irrigation: processand management. Ecologicalstudies 51. Springer-Verlag New York.
  38. Webber, C. L. III and V. K. Bledsoe. 1993. Kenaf : Production, harvesting, processing and products. p. 416-421. New crops. Wiley, New York.
  39. Wing, J. M. 1967. Ensilability, acceptability and digestibility of kenaf. Feedstuffs 39 : 26.
  40. Woo, N. R., T. S. Kim, C. G. Park, H. J. Seong, S. B. Ko, and M. H. Kang. 2005. Antioxidative and antimicrobial activities of extracts from different parts of Crotalaria sessiflora L. J. Korean Soc. Food Sci. Nutr. 34 : 948-952. https://doi.org/10.3746/jkfn.2005.34.7.948

Cited by

  1. Germination is enhanced by removal of the funiculus in the halophyte glasswort (Salicornia herbacea) vol.57, pp.4, 2016, https://doi.org/10.1007/s13580-016-0108-7
  2. Germination and Early Growth Characteristics of the Halophyte Suaeda Asparagoides Under Various Environmental Conditions vol.61, pp.3, 2016, https://doi.org/10.7740/kjcs.2016.61.3.222
  3. NaCl 처리가 눈개승마[Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara]의 생육과 생리활성에 미치는 영향 vol.25, pp.4, 2014, https://doi.org/10.11625/kjoa.2017.25.4.789
  4. 자동 수분 제어시스템을 이용한 간척지 케나프 재배시 하천수 및 액비 관개 효과 vol.66, pp.1, 2014, https://doi.org/10.7740/kjcs.2021.66.1.087