DOI QR코드

DOI QR Code

최근린 배차 규칙 기반 온라인 Personal Rapid Transit 배차 알고리즘

An Online Personal Rapid Transit Dispatching Algorithm Based on Nearest Neighbor Dispatching Rule

  • 투고 : 2014.06.30
  • 심사 : 2014.10.07
  • 발행 : 2014.12.31

초록

Personal Rapid Transit (PRT)는 차세대 대중교통 수단으로 에너지 효율적이며 높은 수준의 고객 서비스를 제공한다. 정류장에 동적으로 도착한 고객이 운송 서비스를 요청하면 PRT 시스템은 차량을 배차한다. 본 연구에서는 PRT 시스템을 위한 새로운 온라인 배차 알고리즘을 제시하였다. 제시된 알고리즘은 최근린(nearest neighbor) 배차 규칙을 기반으로 개발되었으며, 이분 매칭(bipartite matching)을 사용하여 다수의 PRT 차량과 고객을 동시에 고려하여 배차를 결정한다. 이 경우 전체 차량 중 배차 대상 차량의 선택 범위가 성능지표에 영향을 줄 수 있다. 따라서 본 연구에서는 차량의 상태를 고려하여 체계적으로 배차 차량을 선택하는 방법을 제시한다. 성능지표로 공차 이동거리와 고객 대기시간을 고려하였으며, 시뮬레이션 기법을 사용하여 배차 선택 범위에 따른 성능지표의 차이를 확인하였다. 그리고 기존의 배차 규칙과 비교하여 본 연구에서 제시하는 방법론이 우수하며 PRT 시스템에 적합한 것을 확인하였다.

Personal rapid transit (PRT) is a new transportation system, which is energy efficient and brings high quality of customer service. Customers arrive dynamically at stations and request transportation service. In this paper, we propose a new online PRT dispatching algorithm for pickup and delivery of customers. We adopt the nearest neighbor dispatching rule, which is known as performing well in general. We extend the rule with bipartite matching in order to deal with multiple vehicles and customers at the same time. We suggest a systematic way for selecting vehicles that will be considered to be dispatched, since the scope with which vehicles are selected may affect the system performance. We regard the empty travel distance of vehicles and the customer waiting time as the performance measures. By using simulation experiments, it has been examined that the scope of dispatching affects the system performance. The proposed algorithm has been validated by comparing with other dispatching rules for transportation services. We have shown that our algorithm is more suitable for PRT operating environment than other dispatching rules.

키워드

참고문헌

  1. Berbeglia, G., Cordeau, J.-F. and Laporte, G., "Dynamic pickup and delivery problems", European Journal of Operational Research, Vol. 202, No. 1, pp. 8-15, 2010. https://doi.org/10.1016/j.ejor.2009.04.024
  2. Bilge, U., Esenduran, G., Varol, N., Ozturk, Z., Aydin, B. and Alp, A., "Multi-attribute responsive dispatching strategies for automated guided vehicles", International Journal of Production Economics, Vol. 100, No. 1, pp. 65-75, 2006. https://doi.org/10.1016/j.ijpe.2004.10.004
  3. Briskorn, D., Drexl, A. and Hartmann, S., "Inventory-based dispatching of automated guided vehicles on container terminals", OR Spectrum, Vol. 28, No. 4, pp. 611-630, 2006. https://doi.org/10.1007/s00291-006-0033-8
  4. Chen, Z.-L. and Xu, H., "Dynamic Column Generation for Dynamic Vehicle Routing with Time Windows", Transportation Science, Vol. 40, No. 1, pp. 74-88, 2006. https://doi.org/10.1287/trsc.1050.0133
  5. Confessore, G., Fabiano, M. and Liotta, G., "A network flow based heuristic approach for optimising AGV movements", Journal of Intelligent Manufacturing, Vol. 24, No. 2, pp. 405-419, 2013. https://doi.org/10.1007/s10845-011-0612-7
  6. Egbelu, P.J. and Tanchoco, J.M.A., "Characterization of automatic guided vehicle dispatching rules", International Journal of Production Research, Vol. 22, No. 3, pp. 359-374, 1984. https://doi.org/10.1080/00207548408942459
  7. Grunow, M., Gunther, H.-O. and Lehmann, M., "Strategies for dispatching AGVs at automated seaport container terminals", OR Spectrum, Vol. 28, No. 4, pp. 587-610, 2006. https://doi.org/10.1007/s00291-006-0054-3
  8. Haghani, A. and Jung, S., "A dynamic vehicle routing problem with time-dependent travel times", Computers and Operations Research, Vol. 32, No. 11, pp. 2959-2986, 2005. https://doi.org/10.1016/j.cor.2004.04.013
  9. Hiller, B., Krumke, S.O. and Rambau, J., "Reoptimization gaps versus model errors in online-dispatching of service units for ADAC", Discrete Applied Mathematics, Vol. 154, No. 13, pp. 1897-1907, 2006. https://doi.org/10.1016/j.dam.2006.03.033
  10. Ho, Y.-C. and Liu, H.-C., "A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs", Computers and Industrial Engineering, Vol. 51, No. 3, pp. 445-463, 2006. https://doi.org/10.1016/j.cie.2006.08.007
  11. Lee S., "The role of centrality in ambulance dispatching", Decision Support Systems, Vol. 54, No. 1, pp. 282-291, 2012. https://doi.org/10.1016/j.dss.2012.05.036
  12. Regan, A.C., Mahmassani, H.S. and Jaillet, P., "Evaluation of Dynamic Fleet Management System: A Simulation Framework", Transportation Research Record, Vol. 1645, pp. 176-184, 1998. https://doi.org/10.3141/1645-22
  13. Sheridan, P.K., Gluck, E., Guan, Q., Pickles, T., Balcioglu, B. and Benhabib, B., "The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem", Transportation Research Part A, Vol. 49, pp. 178-194, 2013.
  14. UK Tram, "Advice Note for Promoters Considering Personal Rapid Transit", 2012.
  15. Zhicheng, B., Weijian, M., Xiaoming, Y., Ning, Z. and Chao, M., "Modified Hungarian Algorithm for Real-Time ALV Dispatching Problem in Huge Container Terminals", Journal of Networks, Vol. 9, No. 1, pp. 123-130, 2014.

피인용 문헌

  1. A Dispatching and Routing Algorithm for Personal Rapid Transit by Considering Congestion vol.64, pp.11, 2015, https://doi.org/10.5370/KIEE.2015.64.11.1578