Abstract
Cloud computing helps big data processing to make various information using IT resources. The government has to start the RPS(Renewable Portfolio Standard) and induce the production of electricity using renewable energy equipment. And the government manages system to gather big data that is distributed geographically. The companies can purchase the REC(Renewable Energy Certificate) to other electricity generation companies to fill shortage among their duty from the system. Because of the RPS use voluntary competitive market in REC trade and the prices have the large variation, RPS is necessary to predict the equitable REC price using RPS big data. This paper proposed REC price prediction method base on fuzzy logic using the price trend and trading condition infra in REC market, that is modeled in cloud computing environment. Cloud computing helps to analyze correlation and variables that act on REC price within RPS big data and the analysis can be predict REC price by simulation. Fuzzy logic presents balanced REC average trading prices using the trading quantity and price. The model presents REC average trading price using the trading quantity and price and the method helps induce well-converged price in the long run in cloud computing environment.
클라우드 컴퓨팅은 정보의 다양성과 빅데이터를 IT자원을 이용하여 처리할 수 있는 컴퓨팅 개념이다. 정부는 신재생에너지를 활용한 전력생산을 장려하기 위해 RPS를 시행하였고 시스템을 구축하여 지리적으로 분산되어 있는 빅데이터를 수집하여 운영하고 있다. RPS제도를 이행하는 발전사업자들은 의무할당량 중 REC 부족분을 타 발전사업자들로부터 REC를 구매하여 조달해야 한다. REC는 자율시장에 근거하여 거래되고 있고, 매매가격의 편차가 크기 때문에 RPS 빅데이터를 통해 형평성있는 REC가격을 예측할 필요가 있다. 본 연구에서는 부정확한 가격추이와 규칙을 정량적으로 표현하여, 클라우드 환경에서 퍼지기반으로 REC가격을 예측하는 방법을 제안한다. 클라우드 환경에서 RPS 빅데이터를 통한 상호연관성과 가격결정에 영향을 주는 변수들에 대한 분석이 가능하고 시뮬레이션을 통해 REC 가격을 예측할 수 있다. 클라우드 환경에서 퍼지로직은 매물수량과 매매가격을 이용하여 투명성있는 REC 가격을 예측하고 장기적으로 수렴된 가격을 제시할 것이다.