DOI QR코드

DOI QR Code

Breeding System and Allozyme Genetic Diversity of Deutzia paniculata Nakai, an Endemic Shrub in Korea

고유종 꼬리말발도리의 생식특성과 동위효소 유전다양성

  • Chang, Chin-Sung (Department of Forest Sciences and The Arboretum, Seoul National University) ;
  • Kim, Hui (Department of Medicinal Plants Resources, Mokpo National University and Institute of Oriental Medicine)
  • 장진성 (서울대학교 산림과학부(부속수목원)) ;
  • 김휘 (목포대학교 한약자원학과(한방산업연구소))
  • Received : 2013.07.23
  • Accepted : 2014.10.31
  • Published : 2014.12.31

Abstract

Deutzia paniculata is an endemic species, which is geographically restricted within southern part of Korea. Four populations of D. paniculata were sampled across its natural range, from the smallest population, Mt. Dalum, which held less than 100 individuals, to the largest, Mt. Unmum, over 3,500 individuals. Artificial pollination study showed that D. paniculata had an obligate outcross breeding system. Major pollinators were two bee species, Lasioglossum exiliceps and Allograpta balteata (de Geer). The breeding system and patterns of allozyme variation of D. paniculata were investigated to understand the population biology and to explain on reserve designs and management proposals relevant to this species. D. paniculata held relatively low genetic variation at the eight allozyme loci surveyed. Measures of genetic variation in this species alleles per locus ($A_s=1.33$), proportion of polymorphic loci (P=23.85%), and expected heterozygosity ($H_{es}=0.110$) were similar to values reported for endemic species. Mt. Dalum population (DAL) was composed with one clone based on allozyme data. Individuals of D. paniculata were frequently included in root connected clusters. Population genetic structure between and within four populations was probably the result of shrinking effective population size and the extinctions of intervening populations. For the conservation of genetic diversity, maximum number of different genotype need to be protected based on genetic structure and mating system.

고유식물인 꼬리말발도리는 팔공산, 달음산, 가지산과 운문산 등 경상남북도에 제한적으로 분포한다. 본 연구대상인 4개 집단의 크기는 달음산의 최소 100개체에서 운문산 집단이 최대 3,500개체까지이다. 인공수분실험 결과, 생식양식은 완전 타가수분이며, 주요 관찰 화분매개자는 Lasioglossum exiliceps (Vachal)과 호리꽃등에 [Allograpta balteata (de Geer)]였다. 동위효소로 유전적 다양성을 측정한 결과, 종 수준에서의 평균적인 유전다양성은 유전자좌 당 평균 대립유전자수($A_s$)는 1.33, 유전다양성($H_{es}$)은 0.110으로 이미 보고된 고유식물종의 유전다양성과 비슷한 값을 보였다. 달음산 집단은 모든 개체에서 동일한 유전적 조성을 보였으며, 이 집단의 전체 개체가 클론으로 추정된다. 유전자좌의 비율(P)과 유전자좌당 평균 대립유전자($A_P$)의 수는 팔공산 집단이 가장 높았다. 집단 간의 전체 유전 고정지수($F_{IT}$)는 집단 내 지수($F_{IS}$)보다 높아 집단 내 이형접합자의 비율은 높지만, 종 전체 이형접합자 부족현상이 확인되었다. 집단 간의 유전적 분화의 정도를 나타내는 $F_{ST}$값은 0.223, 각 집단 간의 유전적 거리는 평균 0.047(0.011-0.066)로 단형성을 갖는 유전자가 많아 실제 분화는 일부 유전자좌에 국한된 결과이다. 꼬리말발도리의 유전다양성의 감소는 집단의 유효집단 크기 감소와 관련이 있으며, 현지내의 생육지 보전과 함께 현지외 보전을 위해 각 집단별로 최대 유전 다양성을 확보하는 전략이 필요하다.

Keywords

References

  1. Aavik, T., Edwards, P.J., Holderegger, R., Graf, R., and Billeter, R. 2012. Genetic consequences of using seed mixtures in restoration: A case study of a wetland plant Lychnis flos-cuculi. Biological Conservation 145: 195-204. https://doi.org/10.1016/j.biocon.2011.11.004
  2. Allendort, F.W., Luikart, G., and Aitken, S.N. 2013. Conservation and the Genetics of Populations. Wiley-Blackwell, Oxford, U.K.
  3. Avise, J.C. and Hamrick, J.L. 1996. Conservation genetics, case histories from nature. Campman and Hall. New York, U.S.A.
  4. Bae, K.H., Kim, K.J., Kim, N.Y., and Song, J.M. 2012. In vitro culture of rare plant Bletilla striata using Jeju magma seawater. Journal of Plant Biotechnology 39: 281-287. https://doi.org/10.5010/JPB.2012.39.4.281
  5. Baker, H.G. 1989. Some aspects of the natural history of seed banks. pp. 9-21. In: M.A. Leck, V.T. Parker, and R.L. Simpson, eds. Ecology of Soil Seed Banks, Academic Press. New York, U.S.A.
  6. Barrett, S.C.H. and Kohn, J.R. 1991. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. pp. 3-30. In : D.A. Falk and K.E. Holsinger, eds. Genetics and Conservation of Rare Plants, eds. Oxford University Press. New York, U.S.A.
  7. Bouzat, J.L. 2010. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conservation Genetics 11(2): 463-478. https://doi.org/10.1007/s10592-010-0049-0
  8. Chang, C.-S., Kim, H., and Kim, Y.S. 2001. Reconsideration of rare and endangered plant species in Korea based on the IUCN Red List Categories. Korean Journal of Plant Taxonomy 31: 107-142.
  9. Chang, S.-M. and Rausher, M.D. 1999. The role of inbreeding depression in maintaining the mixed mating system of the common morning glory, Ipomoea purpurea. Evolution 53: 1366-1376. https://doi.org/10.2307/2640883
  10. Charleswarth, B. and Charleswarth, D. 1978. A model for the evolution of dioecy and gynodioecy. American Naturalist 84: 665-671.
  11. Chung, M.Y., Nason, J.D., Sun, B.-Y., Moon, M.-O., Chung, J.M., Parkj, C.-W., and Chung, M.G. 2010. Extremely low levels of genetic variation in the critically endangered monotypic fern genus Mankyua chejuense (Ophioglossaceae) from Korea: Implications for conservation Biochemical Systematics and Ecology 38: 888-896. https://doi.org/10.1016/j.bse.2010.09.008
  12. Chung, Y.H. and Shin, H. 1986. Monographic study of the endemic plants in Korea. VI. taxonomy and interspecific relationships of the Genus Deutzia. Korean Journal of Botany 29: 207-231.
  13. Coates, D.J. and Sokolowski, R.E.S. 1992. The mating system and patterns of genetic variation Bankia cuneata A.S. George (Proteaceae). Heredity 69: 11-20. https://doi.org/10.1038/hdy.1992.89
  14. Conkle, M.T., Hodgskiss, P., Nunally, L., and Hunter, S. 1982. Starch Gel Electrophoresis of Conifer Seeds: A laboratory Manual General Technical Report PSW-64. USDA Forest Service. Pacific Southwest and Range Experiment Station. California, U.S.A.
  15. Crow, J.F. and Aoki, K. 1984. Group selection for a polygenic behavioral trait: Estimating the degree of population subdivision. Proceedings of the National Academy of Sciences of the U.S.A. 81: 6073-6077. https://doi.org/10.1073/pnas.81.19.6073
  16. Crow, J.F. and Kimura, M. 1970. An introduction to population genetics theory, Harper and Row. New York, U.S.A.
  17. Delgado, D., Pinero, D., Chaos, A., Perez-Nasser, N., and Alvarez-Buylla, E.R. 1999. High population differentiation and genetic variation in the endangered Mexican pine Pinus rzedowskii (Pinaceae). American Journal of Botany 86: 669-676. https://doi.org/10.2307/2656576
  18. Ellstrand, N.C. and Elam, D.R. 1993. Population genetic consequences of small population size: Implications for plant conservation. Annual Review Ecology and Systematics 24: 217-242. https://doi.org/10.1146/annurev.es.24.110193.001245
  19. Fahselt, D. 1988. The dangers of transplantation as a conservation technique. Natural Areas Journal 8: 238-241.
  20. Fiedler, P.L. 1987. Life history and population dynamics of rare and common mariposa lilies (Calochortus: Liliaceae). Journal of Ecology 75: 977-995. https://doi.org/10.2307/2260308
  21. Frankham, R., Ballou, J.D., Eldridge, M.D.B., Lacy, R.C., Ralls, K., Dudash, M.R., and Fenster, C.B. 2010. Predicting the Probability of Outbreeding Depression. Conservation Biology 25(3): 465-475.
  22. Given, D.R. 1994. Principles and Practice of Plant Conservation. Timber Press. Portland, U.S.A.
  23. Hamrick, J.L. and Godt, M.J.W. 1989. Allozyme diversity in plant species. pp. 43-63. In : A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds. Plant Population genetics, breeding and genetic resources. Sinauer, Sunderland. Massachusetts. U.S.A.
  24. Hamrick, J.L. and Godt, M.J.W. 1996. Effects of life history traits on genetic diversity in plants species. Philosophical Transactions of the Royal Society B 351: 1291-1298. https://doi.org/10.1098/rstb.1996.0112
  25. Hamrick, J.L., Godt, M.J.W., Murawski, D.A., and Loveless, M.D. 1991. Correlations between species traits and allozyme diversity: Implications for conservation biology. pp. 76-86. In : D.A. Falk and K.E. Holsinger, eds. Genetics and Conservation of Rare Plants, eds. Oxford University Press. New York, U.S.A.
  26. Kephart, S.R. 1990. Starch gel electrophoresis of plant isozyme: a comparative analysis of techniques. American Journal of Botany 75: 1114-1119.
  27. Kruckeberg, A.R. and Rabinowitz, D. 1985. Biological aspects of endemism in hight plants. Annual Review of Ecology and Systematics 16: 447-479. https://doi.org/10.1146/annurev.es.16.110185.002311
  28. Li, H., Xie, G., Blum, M.J., Zhen, Y., Lin, M., and Guo, P. 2011. Genetic diversity of the endangered Chinese endemic plant Monimopetalum chinense revealed by amplified fragment length polymorphism (AFLP). Biochemical Systematics and Ecology. 39: 384-391. https://doi.org/10.1016/j.bse.2011.05.012
  29. Liu, Y., Wang, Y., Liu, S., and Huang, H. 2010. Allozyme variation of the endangered endemic plant Myricaria laxiflora: Implications for conservation. Biochemical Systematics and Ecology 38: 463-470. https://doi.org/10.1016/j.bse.2010.04.006
  30. Meffe, G.K. and Carroll, C.R. 1994. Principles of Conservation Biology. Sinauer, Sunderland. Massachusetts, U.S.A.
  31. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the U.S.A. 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  32. Nei, M. 1978. Estimation of average heterogeniety and genetic distance a small number of individuals. Genetics 89: 583-590.
  33. Park, J., Kim, J.M., and Park, K.-R. 2010. Genetic variation in endangered Scrophularia takesimensis (Scrophulariaceae) from Ulleung Island. Botanical Studies 51: 371-376.
  34. Park, S.K., Gil, H.Y., Kim, H., and Chang, C.-S. 2013. A Reconsideration of the List of National Endemic Plants (appendix 4-1) Under the Creation and Furtherance of Arboretums Act Proposed by Korea Forest Service. Journal of Korean Forest Society 102: 1-21. https://doi.org/10.14578/jkfs.2013.102.1.001
  35. Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R.F., Ghosn, D., Holten, J.I., Kanka, R., Kazakis, G., Kollar, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Mesa, J.M., Nagy, L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.-P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P., and Grabherr, G. 2012. Recent Plant Diversity Changes on Europe's Mountain Summits. Science 336(6079): 353-355. https://doi.org/10.1126/science.1219033
  36. Rathcke, B. 1983. Competition and facilitation among plants for pollination. pp. 305-329. In : L. Real, ed. Pollination Biology. Academic Press. New York, U.S.A.
  37. Rathcke, B. and Lacey, E.P. 1985. Phenological patterns of terrestrial plants. Annual Review Ecology and Systematics 16: 179-214. https://doi.org/10.1146/annurev.es.16.110185.001143
  38. Rabinowitz, D., Cairns, S., and Dillon, T. 1986. Seven forms of rarity and their frequency in the flora of the British Isles. pp. 182-204. In : M. Soule, ed. Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates. Sunderland. Massachusetts, U.S.A.
  39. Siegel, S. 1959. Nonparamatic Statisctics. McGraw-Hill Kogakusha. Tokyo, Japan.
  40. Silvertown, J.W. and Doust, J.L. 1993. Introduction to plant population biology. Blackwell Science. London, U.K.
  41. Sipes, S.D. and Wolf, P.G. 1997. Clonal structure and patterns of allozyme diversity in the rare endemic Cycladenia humilis var. jonesii (Apocynaceae). American Journal of Botany 84: 401-409. https://doi.org/10.2307/2446013
  42. Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibruim populations. Evolution 47: 264-279. https://doi.org/10.2307/2410134
  43. Sworford, D.L. 1989. BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 7. Illinois National History Survey.
  44. Wagenius, S., Hangelbroek, H., Ridley, C.E., and Shaw, R.G. 2010. Biparental inbreeding and interremnant mating in a perennial prairie plant: fitness consequences for progeny in their first eight years. Evolution 64: 761-771. https://doi.org/10.1111/j.1558-5646.2009.00860.x
  45. Wright, S. 1951. The genetical structure of populations. Annals of Eugenics 15: 323-354.
  46. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420. https://doi.org/10.2307/2406450
  47. Young, B.E. 2007. Endemic species distribution on the east slope of the Andes in Peru and Bolivia. NatureServe, Arlington, Virginia, U.S.A.
  48. Zaikonnikova. T. I. 1966. Deutzias Ornamental Shrubs. A Monographs of Genus Deuztia. Nauka. Moscow, U.S.S.R. (in Russian)

Cited by

  1. 한반도 특산식물 꼬리말발도리 개체군 구조 및 서식지 특성 vol.49, pp.1, 2014, https://doi.org/10.11614/ksl.2016.49.1.031
  2. 한반도 특산식물 꼬리말발도리의 분포와 생육환경특성 vol.23, pp.2, 2014, https://doi.org/10.13087/kosert.2020.23.2.1