DOI QR코드

DOI QR Code

Metabolic engineering for biofortification of lipophilic antioxidants in plants

식물의 지용성 항산화 물질 생산 증대를 위한 대사공학 연구현황

  • Kim, Eun-Ha (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jong-Bum (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Roh, Kyung Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kang, Han Chul (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Hyun Uk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
  • 김은하 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이경렬 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김종범 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 노경희 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 강한철 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김현욱 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2014.10.08
  • Accepted : 2014.10.27
  • Published : 2014.12.31

Abstract

Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent oxidative damage to cellular component by scavenging free radicals and activated oxygen species. Hydrophobic scavengers are found in cell membrane where they interrupt chain reactions of lipid peroxidation. The three major lipophilic antioxidant classes for human health are carotenoids, vitamin E and coenzyme Q10. The biofortification of staple crops with these lipid soluble antioxidants is an attractive strategy to increase the nutritional quality of human food. Here, we have summarized the biosynthetic pathways of three lipid soluble antioxidants in plants and current status of genetic engineered plants for elevated levels of each lipophilic antioxidant.

세포내에는 비효소적 반응으로 활성산소류를 제거하는 소분자의 항산화 물질과 과산소와 하이드로페록사이드를 분해하는 효소들이 존재한다. 항산화 시스템은 자유라디칼과 활성산소류를 제거함으로써 산화스트레스로부터 세포 구성요소들을 보호하는 역할을 한다. 비효소적 항산화 물질은 지용성과 친수성이 있는데, 지용성 물질들은 세포막에 위치하며 과산화지질이 형성되는 반응을 억제한다. 카로테노이드와 비타민E, $CoQ_{10}$은 세포 내에서 주요 지용성 항산화 물질로써, 이들이 대량으로 축적된 주요 작물의 개발은 영양학적 가치가 높은 식품을 생산할 수 있다. 본 총설에서는 식물에서 카로테노이드와 비타민E, $CoQ_{10}$의 생합성 경로와 대사공학을 이용한 영양강화 연구 현황을 기술하였다.

Keywords

References

  1. Ajjawi I, Shintani D (2004) Engineered plants with elevated vitamin E: a nutraceutical success story. Trends biotechnol 22:104-107 https://doi.org/10.1016/j.tibtech.2004.01.008
  2. Ahn M-J, Noh SA, Ha S-H, Back K, Lee SW, Bae JM (2012) Production of ketocarotenoids in transgenic carrot plants with an enhanced level of $\beta$-carotene. Plant Biotechnol Rep 6: 133-140 https://doi.org/10.1007/s11816-011-0206-z
  3. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. 89:27-71 https://doi.org/10.1152/physrev.00014.2008
  4. Brigelius-Flohe R and Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145-1155 https://doi.org/10.1096/fasebj.13.10.1145
  5. Burkhardt PK, Beyer P, Wunn J, Kloti A, Amstrong GA, Schledz M, Von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulate phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071-1078 https://doi.org/10.1046/j.1365-313X.1997.11051071.x
  6. Burton GW (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10:357-382 https://doi.org/10.1146/annurev.nu.10.070190.002041
  7. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082-1087 https://doi.org/10.1038/nbt853
  8. Capell T and Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148-154 https://doi.org/10.1016/j.copbio.2004.01.009
  9. Chaudieare J and Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949-962 https://doi.org/10.1016/S0278-6915(99)00090-3
  10. Chew BP, Park JS, Wong MW, Wong TS (1999) A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res 19:1849-4853
  11. Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632-642 https://doi.org/10.1104/pp.015222
  12. Dhanasekaran M and Ren J (2005) The emerging role of coenzyme Q10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2:447-459 https://doi.org/10.2174/156720205774962656
  13. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli V, Beyer P, Giuliano G (2006) Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13 https://doi.org/10.1186/1471-2229-6-13
  14. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007) Silencing of beta-carotene hydroxylase increase total carotenoid and beta-carotene in potato tubers. BMC Plant Biol 7:11 https://doi.org/10.1186/1471-2229-7-11
  15. Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schurch W, Bramley PM (2005) Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health promoting isoprenoids in tomato. Plant Biotechnol J 3:17-27
  16. Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901-22909 https://doi.org/10.1074/jbc.M100854200
  17. Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of vitamin E content in seeds but not in leaves. FEBS Lett 540:35-40 https://doi.org/10.1016/S0014-5793(03)00166-2
  18. FAO (2009) Maize, rice and wheat: area harvested production quantity yield. FAO, Rome
  19. Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395-414 https://doi.org/10.1105/tpc.111.093120
  20. Fraser PD and Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipds Res 43:228-265 https://doi.org/10.1016/j.plipres.2003.10.002
  21. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092-1097 https://doi.org/10.1073/pnas.241374598
  22. Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellins pathway. Plant J 8:693-701 https://doi.org/10.1046/j.1365-313X.1995.08050693.x
  23. Gulcin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345-391 https://doi.org/10.1007/s00204-011-0774-2
  24. Huang J-C, Zhong Y-J, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59-67 https://doi.org/10.1016/j.ymben.2013.02.005
  25. Jeya M, Moon H-J, Lee J-L, Kim I-W, Lee J-K (2014) Current state of coenzyme Q10 production and its applications. App Microbiol Biotechnol 85:1653-1663
  26. Kamei M, Fujita T, Kanbe T, Sasaki K, Oshiba K, Otani S, Matsui-Yuasa I, Morisawa S (1986) The distribution and content of ubiquinone in foods. Int J Vitam Nutr Res 56:57-63
  27. Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeast and other organisms. Biotechnol Appl Biochem 53:217-226 https://doi.org/10.1042/BA20090035
  28. Kawaoka A and Ebinuma H (2001) Transcriptional control of lignin biosynthesis by tobacco LIM protein. Phytochem 57:1149-1157 https://doi.org/10.1016/S0031-9422(01)00054-1
  29. Lee JK, Her G, Kim SY, Seo JH (2004) Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol Prog 20:51-56
  30. Li L and Van Eck J (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581-585 https://doi.org/10.1007/s11248-007-9111-1
  31. Li Y, Wang G, Hou R, Zhou Y, Gong R, Sun X, Tang K (2011) Engineering tocopherol biosynthetic pathway in lettuce. Biol Plant 55:453-460 https://doi.org/10.1007/s10535-011-0110-y
  32. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, LI L (2008) Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 59:213-223 https://doi.org/10.1093/jxb/erm299
  33. Lu S, Van ECK J, Zhou X, Lopez AB, O'Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DV, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ Cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594-3605 https://doi.org/10.1105/tpc.106.046417
  34. Mann V, Harker M, Pecker I, Hirschber J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nature Biotechnol 18:888-892 https://doi.org/10.1038/78515
  35. Mirmiran P, Golzarand M, Serra-Majem L, Azizi F (2012) Iron, Iodine and Vitamin A in the middle east; a systematic review of deficiency and food fortification. Iranian J Publ Health 41:8-19
  36. Morris WL, Ducreus LJ, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253-263 https://doi.org/10.1016/j.ymben.2006.01.001
  37. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T and Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762-7767 https://doi.org/10.1073/pnas.0901412106
  38. Naqvi S, Farre G, Zhu C, Sandmann G, Capell T, Christou P (2011) Simultaneous expression of Arabidopsis p-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res 20:177-181 https://doi.org/10.1007/s11248-010-9393-6
  39. Ndikubwimana JD, Lee BH (2014) Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnol Lett 36:1917-1926 https://doi.org/10.1007/s10529-014-1587-1
  40. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutrional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482-487 https://doi.org/10.1038/nbt1082
  41. Romer S, Lubeck J, Kauder F, Steiger S, Adomat C, Sandmann G (2002) Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab Eng4:263-272 https://doi.org/10.1006/mben.2002.0234
  42. Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol 138:441-450 https://doi.org/10.1104/pp.104.057927
  43. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401-412 https://doi.org/10.1046/j.1365-313x.1999.00611.x
  44. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098-2100 https://doi.org/10.1126/science.282.5396.2098
  45. Takahashi S, Ogiyama Y, Kusano H, Shimada H, Kawamuka M, Kadowaki K (2006) Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant. FEBS Lett 580:955-959 https://doi.org/10.1016/j.febslet.2006.01.023
  46. Takahashi S, Ohtani T, Iida S, Sunohara Y, Matsushita K, Maeda H, Tanetani Y, Kawai K, Kawamuka M, Kadowaki K (2009) Development of CoQ10-enriched rice from giant embryo lines. Breed Sci 59:321-326 https://doi.org/10.1270/jsbbs.59.321
  47. Takahashi S, Ohtani T, Satoh H, Nakamura Y, Kawamukai M, Kadowaki K (2010) Development of CoQ10-enriched rice using sugary and shrunken mutants. Biosci Biotechnol Biochem 74:182-184 https://doi.org/10.1271/bbb.90562
  48. Tanaka T, Makita H, Ohnishi M, Mori H, Satoh K, Hara A (1995) Chemoprevention of oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin. Cancer Res 55:4059-4064
  49. Tsegaye Y, Shintanin DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenylpyruvate dioxygenase in Arabidopsis and its relationship to tocopherol biosynthesis. Plant Physiol Biochem 40:913-920 https://doi.org/10.1016/S0981-9428(02)01461-4
  50. van den Briel T, Cheung E, Zewari J, Khan R (2007) Fortifying food in the field to boost nutrition: case studies from Afghanistan, Angola, and Zambia. Food Nutr Bull 28:353-64. https://doi.org/10.1177/156482650702800312
  51. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to Soy oil. Plant Cell 15:3007-3019 https://doi.org/10.1105/tpc.015875
  52. Wirth JP, Laillou A, Rohner F, Northrop-Clewes CA, Macdonald B, Moench-Pfanner R (2012) Lessons learned from national food fortification projects: experiences from Morocco, Uzbekistan, and Vietnam. Food Nutr Bull 33:281-292. https://doi.org/10.1177/15648265120334S304
  53. Ye X, AI-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303-305 https://doi.org/10.1126/science.287.5451.303
  54. Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44:19-26 https://doi.org/10.2323/jgam.44.19
  55. Yu B, Lydiate DJ, Young LW, Schafer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:537-585
  56. Yuan D, Bassie L, Sabalza M, Miralpeix B, Dashevskaya S, Farre G, Rivera SM, Banakar R, Bai C, Sanahuja G, Arjo' G, Avilla E, Zorrilla-Lo'pez U, Ugidos-Damboriena N, Lo'pez, A, Almacellas D, Zhu C, Capell T, Hahne G, Twyman RM, Christou P (2011) The potential impact of plant biotechnology on the millennium development goals. Plant Cell Rep 30:249-265 https://doi.org/10.1007/s00299-010-0987-5
  57. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinational genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in corn. Proc Natl Acad Sci USA 105:18232-18237 https://doi.org/10.1073/pnas.0809737105
  58. Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182-190 https://doi.org/10.1016/j.abb.2008.10.029
  59. Zhu Changfu, Sanahuja G, Yuan D, Farre G, Arjo G, Berman J, Zorrilla-Lopez U, Banakar R, Bai C, Perez-Massot E, Bassie L, Capell T, Christou P (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J 11:129-141 https://doi.org/10.1111/j.1467-7652.2012.00740.x