References
- Dayhoff, M. O. E. R. V. N. B. R. F. (1968). Atlas of protein sequence and structure. Silver Spring, Md.: National Biomedical Research Foundation.
- McLachlan, A. D. (1971). Tests for comparing related amino-acid sequences. Cytochrome c and cytochrome c 551. Journal of molecular biology 61, 409-424. https://doi.org/10.1016/0022-2836(71)90390-1
- Feng, D. F., Johnson, M. S., and Doolittle, R. F. (1985). Aligning amino acid sequences: comparison of commonly used methods. Journal of molecular evolution 21, 112-125. https://doi.org/10.1007/BF02100085
- Mohana Rao, J. K. (1987). New scoring matrix for amino acid residue exchanges based on residue characteristic physical parameters. International journal of peptide and protein research 29, 276-281.
- Risler, J. L., Delorme, M. O., Delacroix, H., and Henaut, A. (1988). Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. Journal of molecular biology 204, 1019-1029. https://doi.org/10.1016/0022-2836(88)90058-7
- Smith, R. F., and Smith, T. F. (1990). Automatic generation of primary sequence patterns from sets of related protein sequences. Proceedings of the National Academy of Sciences of the United States of America 87, 118-122. https://doi.org/10.1073/pnas.87.1.118
- Dayhoff, M. O. N. B. R. F. (1978). Atlas of protein sequence and structure. Washington, D.C.: National Biomedical Research Foundation.
- Henikoff, S., and Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America 89, 10915-10919. https://doi.org/10.1073/pnas.89.22.10915
- Bowie, J., Luthy, R., and Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164-170. https://doi.org/10.1126/science.1853201
- Liu, X., Zhang, L. M., Guan, S., and Zheng, W. M. (2003). Distances and classification of amino acids for different protein secondary structures. Physical review E, Statistical, nonlinear, and soft matter physics 67, 051927. https://doi.org/10.1103/PhysRevE.67.051927
- Johnson, M. S., and Overington, J. P. (1993). A structural basis for sequence comparisons. An evaluation of scoring methodologies. Journal of molecular biology 233, 716-738. https://doi.org/10.1006/jmbi.1993.1548
- Prlic, A., Domingues, F. S., and Sippl, M. J. (2000). Structure-derived substitution matrices for alignment of distantly related sequences. Protein engineering 13, 545-550. https://doi.org/10.1093/protein/13.8.545
- Liu, X., and Zheng, W. M. (2006). An amino acid substitution matrix for protein conformation identification. Journal of bioinformatics and computational biology 4, 769-782. https://doi.org/10.1142/S0219720006002156
- Teodorescu, O., Galor, T., Pillardy, J., and Elber, R. (2004). Enriching the sequence substitution matrix by structural information. Proteins 54, 41-48.
- Xu, W., and Miranker, D. P. (2004). A metric model of amino acid substitution. Bioinformatics 20, 1214-1221. https://doi.org/10.1093/bioinformatics/bth065
- Eyal, E., Frenkel-Morgenstern, M., Sobolev, V., and Pietrokovski, S. (2007). A pair-to-pair amino acids substitution matrix and its applications for protein structure prediction. Proteins 67, 142-153. https://doi.org/10.1002/prot.21223
- Liu, X., and Zhao, Y. P. (2010). Substitution matrices of residue triplets derived from protein blocks. Journal of computational biology: a journal of computational molecular cell biology 17, 1679-1687. https://doi.org/10.1089/cmb.2008.0035
- Xu, H., Ren, W., Liu, X., and Li, X. (2010). Aligning protein sequence and analysing substitution pattern using a class-specific matrix. J Biosci 35, 295-314. https://doi.org/10.1007/s12038-010-0033-3
- Atchley, W. R., Zhao, J., Fernandes, A. D., and Druke, T. (2005). Solving the protein sequence metric problem. Proceedings of the National Academy of Sciences of the United States of America 102, 6395-6400. https://doi.org/10.1073/pnas.0408677102
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Edgar, R. C., and Batzoglou, S. (2006). Multiple sequence alignment. Current opinion in structural biology 16, 368-373. https://doi.org/10.1016/j.sbi.2006.04.004
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics 5, 113. https://doi.org/10.1186/1471-2105-5-113
- Wheeler, D. (2002). Selecting the right protein-scoring matrix. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al] Chapter 3, Unit 3 5.
- Wrabl, J. O., and Grishin, N. V. (2005). Grouping of amino acid types and extraction of amino acid properties from multiple sequence alignments using variance maximization. Proteins: Structure, Function, and Bioinformatics 61, 523-534. https://doi.org/10.1002/prot.20648
- Henikoff, J. G., Greene, E. A., Pietrokovski, S., and Henikoff, S. (2000). Increased coverage of protein families with the blocks database servers. Nucleic acids research 28, 228-230. https://doi.org/10.1093/nar/28.1.228
- Kawashima, S., Ogata, H., and Kanehisa, M. (1999). AAindex: Amino Acid Index Database. Nucleic acids research 27, 368-369. https://doi.org/10.1093/nar/27.1.368
- Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and Kanehisa, M. (2008). AAindex: amino acid index database, progress report 2008. Nucleic acids research 36, D202-205. https://doi.org/10.1093/nar/gkn255
- Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. Journal of molecular biology 105, 1-12. https://doi.org/10.1016/0022-2836(76)90191-1
- Charton, M., and Charton, B. I. (1982). The structural dependence of amino acid hydrophobicity parameters. Journal of theoretical biology 99, 629-644. https://doi.org/10.1016/0022-5193(82)90191-6
- Charton, M., and Charton, B. I. (1983). The dependence of the Chou-Fasman parameters on amino acid side chain structure. Journal of theoretical biology 102, 121-134. https://doi.org/10.1016/0022-5193(83)90265-5
- Prabhakaran, M. (1990). The distribution of physical, chemical and conformational properties in signal and nascent peptides. The Biochemical journal 269, 691-696. https://doi.org/10.1042/bj2690691
- Komatsu, D. (2001). Protein folding recognition based on amino acid physicochemical property profiles. Genome Informatics 12, 358-359.
- Biro, J. C. (2006). Amino acid size, charge, hydropathy indices and matrices for protein structure analysis. Theoretical biology & medical modelling 3, 15. https://doi.org/10.1186/1742-4682-3-15
- Johnson, R. A. W. D. W. (2002). Applied multivariate statistical analysis. Upper Saddle River, N.J.: Prentice Hall.
- Schaffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V., and Altschul, S. F. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic acids research 29, 2994-3005. https://doi.org/10.1093/nar/29.14.2994
- Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 23, 156-161. https://doi.org/10.1093/bioinformatics/btl582
- Colliver, J. A., Barnhart, A. J., Marcy, M. L., and Verhulst, S. J. (1994). Using a receiver operating characteristic (ROC) analysis to set passing standards for a standardized-patient examination of clinical competence. Academic Medicine 69, S37-39. https://doi.org/10.1097/00001888-199410000-00035
- Lipman, D. J., Altschul, S. F., and Kececioglu, J. D. (1989). A tool for multiple sequence alignment. Proceedings of the National Academy of Sciences of the United States of America 86, 4412-4415. https://doi.org/10.1073/pnas.86.12.4412
- Stebbings, L. A., and Mizuguchi, K. (2004). HOMSTRAD: recent developments of the Homologous Protein Structure Alignment Database. Nucleic acids research 32, D203-207. https://doi.org/10.1093/nar/gkh027
Cited by
- Revealing the cellular degradome by mass spectrometry analysis of proteasome-cleaved peptides pp.1546-1696, 2018, https://doi.org/10.1038/nbt.4279
- Analyses on clustering of the conserved residues at protein-RNA interfaces and its application in binding site identification vol.21, pp.1, 2014, https://doi.org/10.1186/s12859-020-3398-9