DOI QR코드

DOI QR Code

Shape- and size-controlled synthesis of noble metal nanoparticles

  • Choi, Kyeong Woo (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Do Youb (Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Ye, Seong Ji (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, O Ok (Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2014.06.16
  • Accepted : 2014.12.16
  • Published : 2014.12.25

Abstract

Noble metal nanoparticles (mainly Au, Ag, Pt and Pd) have received enormous attention owing to their unique and fascinating properties. In the past decades, many researchers have reported methods to control the shape and the size of these noble metal nanoparticles. They have consequently demonstrated outstanding and tunable properties and thus enabled a variety of applications such as surface plasmonics, photonics, diagnostics, sensing, energy storage and catalysis. This paper focuses on the recent advances in the solution-phase synthesis of shape- and size-controlled noble metal nanoparticles. The strategies and protocols for the synthesis of the noble metal nanoparticles are introduced with discussion of growth mechanisms and important parameters, to present the general criteria needed for producing desirable shapes and sizes. This paper reviews their remarkable properties as well as their shape- and size- dependence providing insights on the manipulation of shape and size of metal nanoparticles, necessary for appropriate applications. Finally, several applications using the shape- and size-controlled noble metal nanoparticles are highlighted.

Keywords

Acknowledgement

Supported by : KAIST EEWS Research Center

References

  1. Aiken III, J.D. and Finke, R.G. (1999), "A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis", J. Mol. Catal. A, 145(1), 1-44. https://doi.org/10.1016/S1381-1169(99)00098-9
  2. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M. and van Schalkwijk, W. (2005), "Nanostructured materials for advanced energy conversion and storage devices", Nature Mater., 4(5), 366-377. https://doi.org/10.1038/nmat1368
  3. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T. and Penn, R.L. (2000), "Aggregation-Based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products", Sci., 289(5480), 751-754. https://doi.org/10.1126/science.289.5480.751
  4. Burda, C., Chen, X., Narayanan, R. and El-Sayed, M.A. (2005), "Chemistry and properties of nanocrystals of different shapes", Chem. Rev., 105(4), 1025-1102. https://doi.org/10.1021/cr030063a
  5. Chen, J., Lim, B., Lee, E.P. and Xia, Y. (2009), "Shape-Controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications", Nano Today, 4(1), 81-95. https://doi.org/10.1016/j.nantod.2008.09.002
  6. Choi, K.W., Kim, D.Y., Zhong, X.-L., Li, Z.-Y., Im, S.H. and Park, O.O. (2013), "Robust synthesis of gold rhombic dodecahedra with well-controlled sizes and their optical properties", Cryst. Eng. Comm., 15(2), 252-258. https://doi.org/10.1039/C2CE25598G
  7. Daniel, M.-C. and Astruc, D. (2004), "Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology", Chem. Rev., 104(1), 293-346. https://doi.org/10.1021/cr030698+
  8. Dutilleul, M.C., Seisenbaeva, G. and Kessler, V.G. (2014), "Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis", Adv. Nano Res., 2(2), 77-88. https://doi.org/10.12989/anr.2014.2.2.077
  9. Herrero, E., Buller, L.J. and Abruna, H.D. (2001), "Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials", Chem. Rev., 101(7), 1897-1930. https://doi.org/10.1021/cr9600363
  10. Huang, X., El-Sayed, I. H., Qian, W., El-sayed, M.A. (2006), "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods", J. Am. Chem. Soc., 128(6), 2115-2120. https://doi.org/10.1021/ja057254a
  11. Jain, P.K., Lee, K.S., El-Sayed, I.H. and El-Sayed, M.A. (2006), "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine", J. Phys. Chem. B, 110(14), 7238-7248. https://doi.org/10.1021/jp057170o
  12. Jana, N.R., Gearheart, L. and Murphy, C.J. (2001), "Seed-Mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template", Adv. Mater., 13(18), 1389-1393. https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
  13. Jana, N.R., Gearheart, L. and Murphy, C.J. (2001), "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods", J. Phys. Chem. B, 105(19), 4065-4067.
  14. Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G. (2001), "Photoinduced conversion of silver nanospheres to nanoprisms", Science, 294(5548), 1901-1903. https://doi.org/10.1126/science.1066541
  15. Kenipp, K. (2007), "Surface-Enhanced Raman Scattering", Phys. Today, 60(11), 40.
  16. Kim, D.Y., Choi, K.W., Im, S.H., Park, O.O., Zhong, X.-L. and Li, Z.-Y. (2012), "One-pot synthesis of gold trisoctahedra with high-index facets", Adv. Mater. Res., 1(1), 1-12. https://doi.org/10.12989/amr.2012.1.1.001
  17. Kim, D.Y., Choi, K.W., Zhong, X.-L., Li, Z.-Y., Im, S.H. and Park, O.O. (2013), "Au@Pd core-shell nanocubes with finely-controlled sizes", CrystEngComm, 15(17), 3385-3391. https://doi.org/10.1039/c3ce40175h
  18. Kim, D.Y., Im, S.H., Lim, Y.T. and Park, O.O. (2010), "Evolution of gold nanoparticles through Catalan, Archimedean, and Platonic solids", Cryst. Eng. Comm., 12(1), 116-121. https://doi.org/10.1039/B914353J
  19. Kim, D.Y., Im, S.H. and Park, O.O. (2010), "Synthesis of tetrahexahedral gold nanocrystals with high-index facets", Cryst. Growth Des., 10(8), 3297-3834. https://doi.org/10.1021/cg901506v
  20. Kim, D.Y., Kang, S.W., Choi, K.W., Choi, S.W., Han, S.W., Im, S.H. and Park, O.O. (2013), "Au@Pd nanostructures with tunable morphologies and sizes and their enhanced electrocatalytic activity", Cryst. Eng. Comm., 15(35), 7113-7120. https://doi.org/10.1039/c3ce40986d
  21. Kim, D.Y., Li, W., Y. Ma, Yu, T., Li, Z.-Y., Park, O.O. and Xia, Y. (2011), "Seed-mediated synthesis of gold octahedra in high purity and with well-controlled sizes and optical properties", Chem. Eur. J., 17(17), 4759-4764. https://doi.org/10.1002/chem.201100365
  22. Kim, D.Y., Yu, T., Cho, E.C., Ma, Y., Park, O.O. and Xia, Y. (2011), "Synthesis of gold nano-hexapods with controllable arm lengths and their tunable optical properties", Angew. Chem. Int. Ed., 50(28), 6328-6331. https://doi.org/10.1002/anie.201100983
  23. Kelly, K.L., Coronado, E., Zhao, L.L. and Schatz, G.C. (2003), "The optical properties of metal nanoparticle: The influence of size, shape, and dielectric environment", J. Phys. Chem. B, 107(3), 668-677.
  24. LaMer, V.K. and Dinegar, R.H. (1950), "Theory, production and mechanism of formation of monodispersed hydrosols", J. Am. Chem. Soc., 72(11), 4847-4854. https://doi.org/10.1021/ja01167a001
  25. Li, J., Zheng, Y., Zeng, J. and Xia, Y. (2012), "Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth", Chem. Eur. J., 18(26), 8150-8156. https://doi.org/10.1002/chem.201200823
  26. Lim, B., Jiang, M., Yu, T., Camargo, P.H.C. and Xia, Y. (2010), "Nucleation and growth mechanisms for Pd-Pt bitmetallic nanodendrites and their electrocatalytic properties", Nano Res., 3(2), 69-80. https://doi.org/10.1007/s12274-010-1010-8
  27. Lim, B. and Xia, Y. (2010), "Metal nanocrystals with highly branched morphologies", Angew. Chem. Int. Ed., 50(1), 76-85.
  28. Lim, B., Xiong, Y. and Xia, Y. (2007), "A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals", Angew. Chem. Int. Ed., 46(48), 9279-9282. https://doi.org/10.1002/anie.200703755
  29. Lu, X., Rycenga, M. Skrabalak, S.E., Wiley, B. and Xia, Y. (2009), "Chemical synthesis of novel plasmonic nanoparticles", Annu. Rev. Phys. Chem., 60, 167-192. https://doi.org/10.1146/annurev.physchem.040808.090434
  30. Ma, Y., Zeng, J., Li, W., McKiernan, M., Xie, Z. and Xia, X. (2010), "Seed-Mediated synthesis of truncated gold decahedrons with a AuCl/oleylamine complex as precursor", Adv. Mater., 22(17), 1930-1934. https://doi.org/10.1002/adma.200903930
  31. Marks, L.D. (1994), "Experimental studies of small particle structures", Rep. Prog. Phys., 57(6), 603-649. https://doi.org/10.1088/0034-4885/57/6/002
  32. Murphy, C.J., Gole, A.M., Stone, J. W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C. and Baxter, S.C. (2008), "Gold nanoparticles in biology: beyond toxicity to cellular imaging", Acc. Chem. Res., 41(12), 1721-1730. https://doi.org/10.1021/ar800035u
  33. Ni, C., Hassan, P.A. and Kaler, E.W. (2005), "Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method", Langmuir, 21(8), 3334-3337. https://doi.org/10.1021/la046807c
  34. Orendorff, C.J. and Murphy, C.J. (2006), "Quantitation of metal content in the silver-assisted growth of gold nanorods", J.Phys. Chem. B, 110(9), 3990-3994. https://doi.org/10.1021/jp0570972
  35. Park, K.H, Im, S.H. and Park, O.O. (2011), "The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials", Nanotechnology, 22(4), 045602(6pp). https://doi.org/10.1088/0957-4484/22/4/045602
  36. Peng, X., Wickham, J. and Alivisatos, A.P. (1998), "Kinetics of II-VI and III-V colloidal semiconductor nanocrystals growth: "Focusing" of size distribution", J. Am. Chem. Soc., 120(21), 5343-5344. https://doi.org/10.1021/ja9805425
  37. Pimpinelli, A. and Villain, J. (1998), Physics of Crystal Growth, Cambridge University Press: Cambridge, UK.
  38. Qiu, P. and Mao, C. (2009), "Seed-Mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires", J. Nanopart. Res., 11(4), 885-894. https://doi.org/10.1007/s11051-008-9465-1
  39. Rosi, N.L. and Mirkin, C.A. (2005), "Nanostructures in biodiagnostics", Chem. Rev., 105(4), 1547-1562. https://doi.org/10.1021/cr030067f
  40. Rycenga, M., Cobley, C. M., Zeng, J., Li, W., Moran, C. H., Zhang, Q., Qin, D. and Xia, Y. (2011), "Controlling the synthesis and assembly of silver nanostructures for plasmonic applications", Chem. Rev., 111(6), 3669-3712. https://doi.org/10.1021/cr100275d
  41. Sau, T.K. and Murphy, C.J. (2004), "Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution", J. Am. Chem. Soc., 126(28), 8648-8649. https://doi.org/10.1021/ja047846d
  42. Sau, T.K., Rogach, A.L., Jackel, F., Klar, T.A. and Feldmann, J. (2009), "Properties and applications of colloidal nonspherical noble metal nanoparticles", Adv. Mater., 22(16), 1805-1825.
  43. Seo, D., Park, J.C. and Song, H. (2006), "Polyhedral gold nanocrystals with $O_h$ symmetry: from octahedral to cubes", J. Am. Chem. Soc., 128(46), 14863-14870. https://doi.org/10.1021/ja062892u
  44. Seo, D., Yoo, C.I., Chung, I.S., Park, S.M., Ryu, S. and Song, H. (2008), "Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedral", J. Phys. Chem. C, 112(7), 2469-2475.
  45. Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M. and Xia, Y. (2008), "Gold nanocages: Synthesis, properties, and applications", Acc. Chem. Res., 41(12), 1587-1595. https://doi.org/10.1021/ar800018v
  46. Somorjai, G.A. (1985), "Surface science and catalysis", Science, 227(4689), 902-908. https://doi.org/10.1126/science.227.4689.902
  47. Sun, Y., Mayers, B., Herricks, T. and Xia, Y. (2003), "Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence", Nano Lett., 3(7), 955-960. https://doi.org/10.1021/nl034312m
  48. Sun. Y., Mayers, B. and Xia, Y. (2003), "Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process", Nano Lett., 3(5), 675-679. https://doi.org/10.1021/nl034140t
  49. Sun. Y. and Xia, Y. (2003), "Triangular nanoplates of silver: Synthesis, characterization, and use as sacrificial template for generating triangular nanorings of gold", Adv. Mater., 15(9), 695-699. https://doi.org/10.1002/adma.200304652
  50. Tao, A.R., Habas, S. and Yang, P. (2008), "Shape control of colloidal metal nanocrystals", Small, 4(3), 310-325. https://doi.org/10.1002/smll.200701295
  51. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. and Wang, Z.L. (2007), "Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity", Science, 316(5825), 732-735. https://doi.org/10.1126/science.1140484
  52. Vicsek, T. (1992), Fractal Growth Phenomena, 2nd ed., World Scientific, Singapore.
  53. Wang, D.H., Kim, D.Y., Choi, K.W., Seo, J.H., Im, S.H., Park, J.H., Park, O.O. and Heeger, A.J. (2011), "Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles", Angew. Chem. Int. Ed., 50(24), 5519-5523. https://doi.org/10.1002/anie.201101021
  54. Wang, Y., Yan, B. and Chen, L. (2013), "SERS tags: Novel optical nanoprobes for bioanalysis", Chem. Rev., 113(3), 1391-1428. https://doi.org/10.1021/cr300120g
  55. Wang, Z.L. (2000), "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies", J. Phys. Chem. B, 104(6), 1153-1175. https://doi.org/10.1021/jp993593c
  56. Washio, I., Xiong, Y. and Xia, Y. (2006), "Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates", Adv. Mater., 18(13), 1745-1749. https://doi.org/10.1002/adma.200600675
  57. Wilcoxon, J.P. and Abrams, B.L. (2006), "Synthesis, structure and proeperties of metal nanoclusters", Chem. Soc. Rev., 35(11), 1162-1194. https://doi.org/10.1039/b517312b
  58. Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A. and Xia, Y. (2006), "Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis", J. Phys. Chem. B, 110(32), 15666-15675. https://doi.org/10.1021/jp0608628
  59. Xia, Y., Xiong, Y., Lim, B. and Skrabalak, S.E. (2009), "Shape-Controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?", Angew. Chem. Int. Ed., 48(1), 60-103. https://doi.org/10.1002/anie.200802248
  60. Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J. and Xia, Y. (2007), "Synthesis and mechanistic study of palladium nanobars and nanorods", 129(12), 3665-3675. https://doi.org/10.1021/ja0688023
  61. Xiong, Y., McLellan, J. M., Chen, J., Yin, Y., Li, Z.-Y. and Xia, Y. (2005), "Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties", J. Am. Chem. Soc., 127(48), 17118-17127. https://doi.org/10.1021/ja056498s
  62. Xiong, Y., Siekkinen, A.R., Wang, J., Yin, Y., Kim, M.J. and Xia, Y. (2007) "Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide", J. Mater. Chem., 17(25), 2600-2602 https://doi.org/10.1039/b705253g
  63. Xiong, Y., Wiley, B. J. and Xia, Y. (2007), "Nanocrystals with unconventional shapes- A class of promising catalyst", Angew. Chem. Int. Ed., 46(38), 7157-7159. https://doi.org/10.1002/anie.200702473
  64. Xiong, Y. and Xia, Y. (2007), "Shape-Controlled synthesis of metal nanostructure: The case of palladium", Adv. Mater., 19(20), 3385-3391. https://doi.org/10.1002/adma.200701301
  65. Ye, S.J., Kim, D.Y., Kang, S.W., Choi, K.W., Han, S.W. and Park, O.O. (2014), "Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation", Nanoscale, 6(8), 4182-4187. https://doi.org/10.1039/c3nr06410g
  66. Zhang, H., Jin, M. and Xia, Y. (2012), "Noble-Metal nanocrystals with concave surfaces: Synthesis and applications", Angew. Chem. Int. Ed., 51(31), 7656-7673. https://doi.org/10.1002/anie.201201557
  67. Zhang, H., Jin, M., Xiong, Y., Lim, B. and Xia, Y. (2013), "Shape-Controlled synthesis of Pd nanocrsytals and their catalytic applications", Acc. Chem. Res., 46(8), 1783-1794. https://doi.org/10.1021/ar300209w
  68. Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. and Alivisatos, A.P. (2009), "Observation of single colloidal platinum nanocrystal growth trajectories", Science, 324(5932), 1309-1312. https://doi.org/10.1126/science.1172104
  69. Zhou, Z.-Y., Tian, N., Huang, Z.Z., Chen, D.-J. and Sun, S.-G. (2008), "Nanoparticle catalyst with high energy surface and enhanced activity synthesized by electrochemical method", Faraday Discuss., 2009, 140, 81-92. https://doi.org/10.1039/B803716G

Cited by

  1. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1500-z
  2. Testing specimen effect on shrinkage of lightweight concrete vol.171, pp.3, 2018, https://doi.org/10.1680/jstbu.16.00125
  3. Design of Noble Metal Electrocatalysts on an Atomic Level pp.21960216, 2019, https://doi.org/10.1002/celc.201801189
  4. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities vol.53, pp.24, 2018, https://doi.org/10.1007/s10853-018-2792-4
  5. Size effect and age factor in mechanical properties of BST Light Weight Concrete vol.177, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.05.115