DOI QR코드

DOI QR Code

Clinical Significance of BCR-ABL Fusion Gene Subtypes in Chronic Myelogenous and Acute Lymphoblastic Leukemias

  • Ye, Yuan-Xin (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Zhou, Juan (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Zhou, Yan-Hong (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Zhou, Yi (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Song, Xing-Bo (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Wang, Jun (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Lin, Li (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Ying, Bin-Wu (Department of Laboratory Medicine, West China Hospital, Sichuan University) ;
  • Lu, Xiao-Jun (Department of Laboratory Medicine, West China Hospital, Sichuan University)
  • Published : 2014.12.18

Abstract

Background: Some reports have suggested that chronic myeloid leukemia (CML) patients have a higher prevalence of M-bcr than acute lymphoblastic leukemia (ALL) patients, which show a higher prevalence of m-bcr. However, the relationship between BCR-ABL subtypes and progression of CML and ALL remains unclear. Materials and Methods: 354 CML chronic phase (CML-CP) patients, 26 CML blastic phase (CML-BP) patients and 72 ALL patients before treatment with BCR-ABL positive were recruited for blood routine examination and bone marrow smear cytology. Some 80 CML-CP and 32 ALL patients after imatinib (IM) treatment were followed-up for BCR-ABL relative concentrations detected after treatment for 3, 6 and 9 months and 1 year. Results: Before treatment, CML-CP patients showed lower BCR-ABL relative concentrations with a higher proportion of M-bcr (42.7%) compared to CML-BP and ALL patients while ALL patients had a higher BCR-ABL relative concentration with high expression of m-bcr (51.4%). Patients with M-bcr demonstrated higher WBC counts than those with m-bcr and the mixed group and higher PLT counts were noted in the CML-CP and ALL groups. After imatinib (IM) treatment, patients with m-bcr showed higher BCR-ABL relative concentrations in both CML-CP and ALL groups. Conclusions: This study identified the BCR-ABL gene as an important factor in CML and ALL cases. The M-bcr subtype was associated more with CML while the m-bcr subtype was associated more with ALL. Patients with m-bcr seem to have a poorer response to IM in either CML or ALL patients compared to M-bcr patients.

Keywords

References

  1. Al-Seraihy AS, Owaidah TM, Ayas M, et al (2009). Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica, 94, 1682-90. https://doi.org/10.3324/haematol.2009.009282
  2. Awan T, Iqbal Z, Aleem A, et al (2012). Five most common prognostically important fusion oncogenes are detected in the majority of Pakistani pediatric acute lymphoblastic leukemia patients and are strongly associated with disease biology and treatment outcome. Asian Pac J Cancer Prev, 13, 5469-75. https://doi.org/10.7314/APJCP.2012.13.11.5469
  3. Bhatia P, Binota J, Varma N, et al (2012). A study on the expression of BCR-ABL transcript in mixed phenotype acute leukemia (MPAL) cases using the reverse transcriptase polymerase reaction assay (RT-PCR) and its correlation with hematological remission status post initial induction therapy. Mediterr J Hematol Infect Dis, 4, 2012024. https://doi.org/10.4084/mjhid.2012.024
  4. Cetin Z, Yakut S, Karadogan I, et al (2012). Aberrations of chromosomes 9 and 22 in acute lymphoblastic leukemia cases detected by ES-fluorescence in situ hybridization. Genet Test Mol Biomarkers, 16, 318-23. https://doi.org/10.1089/gtmb.2011.0186
  5. Cho YJ, Zhang B, Kaartinen V, et al (2005). Generation of rac3 null mutant mice: role of Rac3 in Bcr/Abl-caused lymphoblastic leukemia. Mol Cell Biol, 25, 5777-85. https://doi.org/10.1128/MCB.25.13.5777-5785.2005
  6. Chomel JC, Sorel N, Guilhot J, et al (2012). BCR-ABL expression in leukemic progenitors and primitive stem cells of patients with chronic myeloid leukemia. Blood, 119, 2964-65; author reply 2965-66. https://doi.org/10.1182/blood-2011-12-396226
  7. Den Boer ML, van Slegtenhorst M, De Menezes RX, et al (2009). A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol, 10, 125-34. https://doi.org/10.1016/S1470-2045(08)70339-5
  8. Druker BJ, Guilhot F, O'Brien SG, et al (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med, 355, 2408-17. https://doi.org/10.1056/NEJMoa062867
  9. Ernst T, Hochhaus A (2012). Chronic myeloid leukemia: clinical impact of BCR-ABL1 mutations and other lesions associated with disease progression. Semin Oncol, 39, 58-66. https://doi.org/10.1053/j.seminoncol.2011.11.002
  10. Fausel C (2007). Targeted chronic myeloid leukemia therapy: Seeking a cure. Am J Health Syst Pharm, 64, 9-15.
  11. Gabert J, Beillard E, van der Velden VH, et al (2003). Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe against cancer program. Leukemia, 17, 2318-57. https://doi.org/10.1038/sj.leu.2403135
  12. Gokbuget N, Stanze D, Beck J, et al (2012). Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood, 120, 2032-41. https://doi.org/10.1182/blood-2011-12-399287
  13. Hanfstein B, Muller MC, Hehlmann R, et al (2012). Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia, 26, 2096-102. https://doi.org/10.1038/leu.2012.85
  14. Hehlmann R, Hochhaus A, Baccarani M (2007). Chronic myeloid leukaemia. Lancet, 370, 342-50. https://doi.org/10.1016/S0140-6736(07)61165-9
  15. Hunger SP (2011). Tyrosine kinase inhibitor use in pediatric Philadelphia chromosome-positive acute lymphoblastic anemia. Hematology Am Soc Hematol Educ Program, 2011, 361-5. https://doi.org/10.1182/asheducation-2011.1.361
  16. Killick S, Matutes E, Powles RL, et al (1999). Outcome of biphenotypic acute leukemia. Haematologica, 84, 699-706.
  17. Lee KH, Lee JH, Choi SJ, et al (2005). Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia, 19, 1509-16. https://doi.org/10.1038/sj.leu.2403886
  18. Li Y, Zou D, Zhao Y, et al (2010). Clinical characteristics and outcomes of adults with Philadelphia chromosome positive and/or bcr-abl positive acute lymphoblastic leukemia: a single center study from China. Leuk Lymphoma, 51, 488-96. https://doi.org/10.3109/10428190903370361
  19. Lu X, Song X, Ye Y, et al (2011). Quantitative detection of BCRABL fusion gene and its application in monitoring chronic myeloid leukemia treatment. Mol Biol Rep, 38, 3101-5. https://doi.org/10.1007/s11033-010-9979-3
  20. Marin D, Ibrahim AR, Lucas C, et al (2012). Assessment of BCRABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol, 30, 232-8. https://doi.org/10.1200/JCO.2011.38.6565
  21. Matutes E, Pickl WF, Van't Veer M, et al (2011). Mixedphenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood, 117, 3163-71. https://doi.org/10.1182/blood-2010-10-314682
  22. Mizuta S, Matsuo K, Maeda T, et al (2012). Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J, 2, 72. https://doi.org/10.1038/bcj.2012.18
  23. Moorman AV, Harrison CJ, Buck GA, et al (2007). Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the medical research council (MRC) UKALLXII/ Eastern cooperative oncology group (ECOG) 2993 trial. Blood, 109, 3189-97. https://doi.org/10.1182/blood-2006-10-051912
  24. Mu Q, Ma Q, Wang Y, et al (2012). Cytogenetic profile of 1, 863 Ph/BCR-ABL-positive chronic myelogenous leukemia patients from the Chinese population. Ann Hematol, 91, 1065-72. https://doi.org/10.1007/s00277-012-1421-6
  25. Mulloy JC, Cancelas JA, Filippi MD, et al (2010). Rho GTPases in hematopoiesis and hemopathies. Blood, 115, 936-47. https://doi.org/10.1182/blood-2009-09-198127
  26. Ohanian M, Cortes J, Kantarjian H, Jabbour E (2012). Tyrosine kinase inhibitors in acute and chronic leukemias. Expert Opin Pharmacother, 13, 927-38. https://doi.org/10.1517/14656566.2012.672974
  27. Ohsaka A, Shiina S, Kobayashi M, et al (2002). Philadelphia chromosome-positive chronic myeloid leukemia expressing p190 (BCR-ABL). Intern Med, 41, 1183-7. https://doi.org/10.2169/internalmedicine.41.1183
  28. Press RD, Galderisi C, Yang R, et al (2007). A half-log increase in BCR-ABL RNA predicts a higher risk of relapse in patients with chronic myeloid leukemia with an imatinibinduced complete cytogenetic response. Clin Cancer Res, 13, 6136-43. https://doi.org/10.1158/1078-0432.CCR-07-1112
  29. Sabir N, Iqbal Z, Aleem A, et al (2012). Prognostically significant fusion oncogenes in Pakistani patients with adult acute lymphoblastic leukemia and their association with disease biology and outcome. Asian Pac J Cancer Prev, 13, 3349-55. https://doi.org/10.7314/APJCP.2012.13.7.3349
  30. Soheila K, Hamid A, Farid Z, et al (2013). Comparison of univariate and multivariate gene set analysis in acute lymphoblastic leukemia. Asian Pac J Cancer Prev, 14, 1629-33. https://doi.org/10.7314/APJCP.2013.14.3.1629
  31. Tripathi AK, Kumar A, Ramaswamy A (2011). Total Leukocyte counts and the requirement of dose reduction due to cytopenias as prognostic indicators affecting response to imatinib in chronic myeloid leukemia. Indian J Hematol Blood Transfus, 27, 7-13. https://doi.org/10.1007/s12288-010-0048-9
  32. Uchida N, Hanawa H, Dan K, et al (2009). Leukemogenesis of b2a2-type p210 BCR/ABL in a bone marrow transplantation mouse model using a lentiviral vector. J Nippon Med Sch, 76, 134-47. https://doi.org/10.1272/jnms.76.134
  33. Wang Y, Gu M, Mi Y, et al (2011). Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol, 94, 552-5. https://doi.org/10.1007/s12185-011-0953-1
  34. Weinberg OK, Arber DA (2010). Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia, 24, 1844-51. https://doi.org/10.1038/leu.2010.202
  35. Yanada M, Takeuchi J, Sugiura I, et al (2008). Karyotype at diagnosis is the major prognostic factor predicting relapsefree survival for patients with Philadelphia chromosomepositive acute lymphoblastic leukemia treated with imatinibcombined chemotherapy. Haematologica, 93, 287-90. https://doi.org/10.3324/haematol.11891
  36. Yeung DT, Hughes TP (2012). Therapeutic targeting of BCR-ABL: prognostic markers of response and resistance mechanism in chronic myeloid leukaemia. Crit Rev Oncog, 17, 17-30. https://doi.org/10.1615/CritRevOncog.v17.i1.30

Cited by

  1. Parameters Involved in Autophosphorylation in Chronic Myeloid Leukemia: a Systems Biology Approach vol.16, pp.13, 2015, https://doi.org/10.7314/APJCP.2015.16.13.5273
  2. Chronic Myeloid Leukemia - Prognostic Value of Mutations vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7415
  3. Detection of BCR/ABL Fusion Gene by Hematological and Cytogenetical Analysis in Chronic Myeloid Leukemia Patients in Quetta, Pakistan vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3793
  4. Multiplex RT-PCR Assay for Detection of Common Fusion Transcripts in Acute Lymphoblastic Leukemia and Chronic Myeloid Leukemia Cases vol.17, pp.2, 2016, https://doi.org/10.7314/APJCP.2016.17.2.677
  5. Effect of STAT3 inhibitor in chronic myeloid leukemia associated signaling pathway: a mathematical modeling, simulation and systems biology study vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-015-0357-7
  6. levels identifies susceptibility loci linked to neuronal diseases pp.1460-2083, 2016, https://doi.org/10.1093/hmg/ddw134