DOI QR코드

DOI QR Code

Increased Sister Chromatid Exchange in Peripheral Blood Lymphocytes from Humans Exposed to Pesticide: Evidence Based on a Meta-analysis

  • Yang, Hai-Yan (Department of Epidemiology, School of Public Health, Zhengzhou University) ;
  • Liu, Jing (Department of Epidemiology, School of Public Health, Zhengzhou University) ;
  • Yang, Si-Yu (Department of Epidemiology, School of Public Health, Zhengzhou University) ;
  • Wang, Hai-Yu (Department of Toxicology, Henan Center for Disease Control and Prevention) ;
  • Wang, Ya-Dong (Department of Toxicology, Henan Center for Disease Control and Prevention)
  • Published : 2014.12.18

Abstract

Background: Sister chromatid exchange (SCE) in human peripheral blood lymphocytes is one of the most extensively studied biomarkers employed to evaluate genetic damage subsequent to pesticide exposure. Objective: To estimate the pooled levels of SCE in human peripheral blood lymphocytes among population exposed to pesticide. Materials and Methods: Meta-analysis on the association between SCE frequency and pesticide exposure was performed with STATA 10.0 software package and Review Manager 5.0.24 in this study. Results: The overall means of SCE were 7.88 [95% confidence intervals (95%CI): 6.71-9.04] for exposure group and 6.05 (95%CI: 5.13-6.95) for controls, respectively. There was statistically significant difference in the SCE frequency in human peripheral blood lymphocytes between pesticide-exposed groups and control groups, and the summary estimate of weighted mean difference was 1.69 (95%CI: 1.01-2.38). We also observed that pesticide-exposed population had significantly higher SCE frequency than control groups among smokers, nonsmokers, pesticide applicator, pesticide producer, other exposure population and Asian population in stratified analyses. Conclusions: Data indicate that the SCE frequency in human peripheral blood lymphocytes might be an indicator of early genetic esffects for pesticide-exposed populations.

Keywords

References

  1. Alavanja MC, Dosemeci M, Samanic C, et al (2004). Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol, 160, 876-85. https://doi.org/10.1093/aje/kwh290
  2. Anwar WA (1994). Monitoring of human populations at risk by different cytogenetic end points. Environ Health Perspect, 102, 131-4. https://doi.org/10.1289/ehp.94102s3131
  3. Balasubramaniam G, Saoba S, Sarade M, et al (2013). Casecontrol study of risk factors for Non-Hodgkin lymphoma in Mumbai, India. Asian Pac J Cancer Prev, 14, 775-80. https://doi.org/10.7314/APJCP.2013.14.2.775
  4. Bauchinger M, Dresp J, Schmid E, et al (1982). Chromosome changes in lymphocytes after occupational exposure to pentachlorophenol (PCP). Mutat Res, 102, 83-8. https://doi.org/10.1016/0165-1218(82)90148-3
  5. Begg CB, Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088-101. https://doi.org/10.2307/2533446
  6. Ben Salah G, Kamoun H, Rebai A, et al (2011). Sister chromatid exchange (SCE) and high-frequency cells (HFC) in peripheral blood lymphocytes of healthy Tunisian smokers. Mutat Res, 719, 1-6. https://doi.org/10.1016/j.mrgentox.2010.09.003
  7. Bolognesi C, Abbondandolo A, Barale R, et al (1997). Agerelated increase of baseline frequencies of sister chromatid exchanges, chromosome aberrations, and micronuclei in human lymphocytes. Cancer Epidemiol Biomarkers Prev, 6, 249-56.
  8. Bolognesi C, Creus A, Ostrosky-Wegman P, et al (2011). Micronuclei and pesticide exposure. Mutagenesis, 26, 19-26. https://doi.org/10.1093/mutage/geq070
  9. Bonassi S, Bolognesi C, Abbondandolo A, et al (1995). Influence of sex on cytogenetic end points: evidence from a large human sample and review of the literature. Cancer Epidemiol Biomarkers Prev, 4, 671-9.
  10. Bonassi S, Fenech M, Lando C, et al (2001). HUman MicroNucleus project: international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes: I. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei. Environ Mol Mutagen, 37, 31-45. https://doi.org/10.1002/1098-2280(2001)37:1<31::AID-EM1004>3.0.CO;2-P
  11. Carbonell E, Puig M, Xamena N, et al (1990). Sister chromatid exchange in lymphocytes of agricultural workers exposed to pesticides. Mutagenesis, 5, 403-5. https://doi.org/10.1093/mutage/5.4.403
  12. Carbonell E, Xamena N, Creus A, et al (1993). Cytogenetic biomonitoring in a Spanish group of agricultural workers exposed to pesticides. Mutagenesis, 8, 511-7. https://doi.org/10.1093/mutage/8.6.511
  13. Celik A, Ekinci SY, Guler G, et al (2014). In vitro genotoxicity of fipronil sister chromatid exchange, cytokinesis block micronucleus test, and comet assay. DNA Cell Biol, 33, 148-54. https://doi.org/10.1089/dna.2013.2158
  14. Costa C, Teixeira JP, Silva S, et al (2006). Cytogenetic and molecular biomonitoring of a Portuguese population exposed to pesticides. Mutagenesis, 21, 343-50. https://doi.org/10.1093/mutage/gel039
  15. De Ferrari M, Artuso M, Bonassi S, et al (1991). Cytogenetic biomonitoring of an Italian population exposed to pesticides: chromosome aberration and sister-chromatid exchange analysis in peripheral blood lymphocytes. Mutat Res, 260, 105-13. https://doi.org/10.1016/0165-1218(91)90086-2
  16. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials, 7, 177-88. https://doi.org/10.1016/0197-2456(86)90046-2
  17. Egger M, Davey Smith G, Schneider M, et al (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629-34. https://doi.org/10.1136/bmj.315.7109.629
  18. Ergene S, Celik A, Cavas T, et al (2007). Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Goksu Delta: micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ Int, 33, 877-85. https://doi.org/10.1016/j.envint.2007.04.003
  19. Federico C, Motta S, Palmieri C, et al (2011). Phenylurea herbicides induce cytogenetic effects in Chinese hamster cell lines. Mutat Res, 721, 89-94. https://doi.org/10.1016/j.mrgentox.2010.12.013
  20. Gilden RC, Huffling K, Sattler B (2010). Pesticides and health risks. J Obstet Gynecol Neonatal Nurs, 39, 103-10. https://doi.org/10.1111/j.1552-6909.2009.01092.x
  21. Gomez-Arroyo S, Diaz-Sanchez Y, Meneses-Perez MA, et al (2000). Cytogenetic biomonitoring in a Mexican floriculture worker group exposed to pesticides. Mutat Res, 466, 117-24. https://doi.org/10.1016/S1383-5718(99)00231-4
  22. Gomez-Arroyo S, Noriega-Aldana N, Osorio A, et al (1992). Sister-chromatid exchange analysis in a rural population of Mexico exposed to pesticides. Mutat Res, 281, 173-9. https://doi.org/10.1016/0165-7992(92)90005-3
  23. Hatjian BA, Mutch E, Williams FM, et al (2000). Cytogenetic response without changes in peripheral cholinesterase enzymes following exposure to a sheep dip containing diazinon in vivo and in vitro. Mutat Res, 472, 85-92. https://doi.org/10.1016/S1383-5718(00)00131-5
  24. Hoyos LS, Carvajal S, Solano L, et al (1996). Cytogenetic Monitoring of Farmers exposed to pesticides in Colombia. Environ Health Perspect, 104, 535-8. https://doi.org/10.1289/ehp.96104s3535
  25. Jablonicka A, Polakova H, Karelova J, et al (1989). Analysis of chromosome aberrations and sister-chromatid exchanges in peripheral blood lymphocytes of workers with occupational exposure to the mancozeb-containing fungicide Novozir Mn80. Mutat Res, 224, 143-6. https://doi.org/10.1016/0165-1218(89)90148-1
  26. Joksic G, Vidakovic A, Spasojevic-Tisma V (1997). Cytogenetic monitoring of pesticide sprayers. Environ Res, 75, 113-8. https://doi.org/10.1006/enrs.1997.3753
  27. Kourakis A, Mouratidou M, Barbouti A, et al (1996). Cytogenetic effects of occupational exposure in the peripheral blood lymphocytes of pesticide sprayers. Carcinogenesis, 17, 99-101. https://doi.org/10.1093/carcin/17.1.99
  28. Kumar A, Vashist M, Rathee R (2014). Maternal factors and risk of childhood leukemia. Asian Pac J Cancer Prev, 15, 781-4. https://doi.org/10.7314/APJCP.2014.15.2.781
  29. Lander F, Ronne M (1995). Frequency of sister chromatid exchange and hematological effects in pesticide-exposed greenhouse sprayers. Scand J Work Environ Health, 21, 283-8. https://doi.org/10.5271/sjweh.39
  30. Linnainmaa K (1983). Sister chromatid exchanges among workers occupationally exposed to phenoxy acid herbicides 2, 4-D and MCPA. Teratog Carcinog Mutagen, 3, 269-79. https://doi.org/10.1002/1520-6866(1990)3:3<269::AID-TCM1770030306>3.0.CO;2-F
  31. Martinez-Valenzuela C, Gomez-Arroyo S, Villalobos-Pietrini R, et al (2009). Genotoxic biomonitoring of agricultural workers exposed to pesticides in the north of Sinaloa State, Mexico. Environ Int, 35, 1155-9. https://doi.org/10.1016/j.envint.2009.07.010
  32. Mink PJ, Adami HO, Trichopoulos D, et al (2008). Pesticides and prostate cancer: a review of epidemiologic studies with specific agricultural exposure information. Eur J Cancer Prev, 17, 97-110. https://doi.org/10.1097/CEJ.0b013e3280145b4c
  33. Neri M, Ceppi M, Knudsen LE, et al (2005). Baseline micronuclei frequency in children: estimates from meta- and pooled analyses. Environ Health Perspect, 113, 1226-9. https://doi.org/10.1289/ehp.7806
  34. Nikoloff N, Soloneski S, Larramendy ML (2012). Genotoxic and cytotoxic evaluation of the herbicide flurochloridone on Chinese hamster ovary (CHO-K1) cells. Toxicol In Vitro, 26, 157-63. https://doi.org/10.1016/j.tiv.2011.10.015
  35. Padmavathi P, Aruna Prabhavathi P, Reddy PP (2000). Frequencies of SCEs in peripheral blood lymphocytes of pesticide workers. Bull Environ Contam Toxicol, 64, 155-60. https://doi.org/10.1007/s001289910024
  36. Pasquini R, Scassellati-Sforzolini G, Angeli G, et al (1996). Cytogenetic biomonitoring of pesticide-exposed farmers in central Italy. J Environ Pathol Toxicol Oncol, 15, 29-39.
  37. Rajabli N, Naeimi-Tabeie M, Jahangirrad A, et al (2013). Epidemiology of leukemia and multiple myeloma in Golestan, Iran. Asian Pac J Cancer Prev, 14, 2333-6. https://doi.org/10.7314/APJCP.2013.14.4.2333
  38. Rowland RE, Edwards LA, Podd JV (2007). Elevated sister chromatid exchange frequencies in New Zealand Vietnam War veterans. Cytogenet Genome Res, 116, 248-51. https://doi.org/10.1159/000100407
  39. Rupa DS, Reddy PP, Reddi OS (1989). Analysis of sisterchromatid exchanges, cell kinetics and mitotic index in lymphocytes of smoking pesticide sprayers. Mutat Res, 223, 253-8. https://doi.org/10.1016/0165-1218(89)90053-0
  40. Rupa DS, Reddy PP, Sreemannarayana K, et al (1991). Frequency of sister chromatid exchange in peripheral lymphocytes of male pesticide applicators. Environ Mol Mutagen, 18, 136-8. https://doi.org/10.1002/em.2850180209
  41. Rupa DS, Rita P, Reddy PP, et al (1988). Screening of chromosomal aberrations and sister chromatid exchanges in peripheral lymphocytes of vegetable garden workers. Hum Toxicol, 7, 333-6. https://doi.org/10.1177/096032718800700406
  42. Scarpato R, Migliore L, Angotzi G, et al (1996). Cytogenetic monitoring of a group of Italian floriculturists: no evidence of DNA damage related to pesticide exposure. Mutat Res, 367, 73-82. https://doi.org/10.1016/0165-1218(95)00071-2
  43. Shaham J, Kaufman Z, Gurvich R, et al (2001). Frequency of sister-chromatid exchange among greenhouse farmers exposed to pesticides. Mutat Res, 491, 71-80. https://doi.org/10.1016/S1383-5718(01)00130-9
  44. Shakeel MK, George PS, Jose J, et al (2010). Pesticides and breast cancer risk: a comparison between developed and developing countries. Asian Pac J Cancer Prev, 11, 173-80.
  45. Shim YK, Mlynarek SP, van Wijngaarden E (2009). Parental exposure to pesticides and childhood brain cancer: U.S. Atlantic coast childhood brain cancer study. Environ Health Perspect, 117, 1002-6. https://doi.org/10.1289/ehp.0800209
  46. Steenland K, Cedillo L, Tucker J, et al (1997). Thyroid hormones and cytogenetic outcomes in backpack sprayers using ethylenebis (dithiocarbamate) (EBDC) fungicides in Mexico. Environ Health Perspect, 105, 1126-30. https://doi.org/10.1289/ehp.971051126
  47. Suarez S, Rubio A, Sueiro RA, et al (2003). Sister chromatid exchanges and micronuclei analysis in lymphocytes of men exposed to simazine through drinking water. Mutat Res, 537, 141-9. https://doi.org/10.1016/S1383-5718(03)00080-9
  48. Turkez H, Aydin E (2012). The effects of taurine on permethrininduced cytogenetic and oxidative damage in cultured human lymphocytes. Arh Hig Rada Toksikol, 63, 27-34.
  49. Uysal M, Bozcuk H, Karakilinc H, et al (2013). Pesticides and cancer: the first incidence study conducted in Turkey. J Environ Pathol Toxicol Oncol, 32, 245-9. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013008232
  50. Wilson DM, 3rd, Thompson LH (2007). Molecular mechanisms of sister-chromatid exchange. Mutat Res, 616, 11-23. https://doi.org/10.1016/j.mrfmmm.2006.11.017
  51. Yildirim M, Karakilinc H, Yildiz M, et al (2013). Non-Hodgkin lymphoma and pesticide exposure in Turkey. Asian Pac J Cancer Prev, 14, 3461-3. https://doi.org/10.7314/APJCP.2013.14.6.3461
  52. Yuzbasioglu D, Celik M, Yilmaz S, et al (2006). Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutat Res, 604, 53-9. https://doi.org/10.1016/j.mrgentox.2006.01.001
  53. Zeljezic D, Garaj-Vrhovac V (2002). Sister chromatid exchange and proliferative rate index in the longitudinal risk assessment of occupational exposure to pesticides. Chemosphere, 46, 295-303. https://doi.org/10.1016/S0045-6535(01)00073-X
  54. Zendehdel R, Tayefeh-Rahimian R, Kabir A (2014). Chronic exposure to chlorophenol related compounds in the pesticide production workplace and lung cancer: a meta-analysis. Asian Pac J Cancer Prev, 15, 5149-53. https://doi.org/10.7314/APJCP.2014.15.13.5149

Cited by

  1. Study of commonly used organophosphate pesticides that induced oxidative stress and apoptosis in peripheral blood lymphocytes of rats vol.36, pp.11, 2017, https://doi.org/10.1177/0960327116680273