DOI QR코드

DOI QR Code

Anti-inflammatory effect of polyphenol-rich extract from the red alga Callophyllis japonica in lipopolysaccharide-induced RAW 264.7 macrophages

  • Ryu, BoMi (School of Pharmacy, The University of Queensland) ;
  • Choi, Il-Whan (Department of Microbiology, College of Medicine and Advanced Research Center for Multiple Myeloma, Inje University) ;
  • Qian, Zhong-Ji (College of Food Science and Technology, Guangdong Ocean University) ;
  • Heo, Soo-Jin (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kang, Do-Hyung (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology) ;
  • Oh, Chulhong (Global Bioresources Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jeon, You-Jin (Department of Marine Life Sciences, Jeju National University) ;
  • Jang, Chul Ho (Department of Otolaryngology, Chonnam National University Medical School) ;
  • Park, Won Sun (Department of Physiology, School of Medicine, Kangwon National University) ;
  • Kang, Kyong-Hwa (Department of Marine-bio Convergence Science, Pukyong National University) ;
  • Je, Jae-Young (Department of Marine-bio Convergence Science, Pukyong National University) ;
  • Kim, Se-Kwon (Department of Marine-bio Convergence Science, Pukyong National University) ;
  • Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University) ;
  • Ko, Seok-Chun (Institute of Marine Biotechnology, Pukyong National University) ;
  • Kim, GeunHyung (Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jung, Won-Kyo (Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
  • Received : 2014.05.20
  • Accepted : 2014.10.22
  • Published : 2014.12.15

Abstract

Despite the extensive literature on marine algae over the past few decades, a paucity of published research and studies exists on red algae. The purpose of this study was to evaluate the potential therapeutic properties of the ethanol extract of the red alga Callophyllis japonica against lipopolysaccharide (LPS)-stimulated macrophage inflammation. The C. japonica extract (CJE) significantly inhibited the nitric oxide (NO) production and the induced dose-dependent reduction of the protein and mRNA levels of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the CJE reduced the mRNA levels of inflammatory cytokines, including tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6. We investigated the mechanism by which the CJE inhibits NO by examining the level of mitogen-activated protein kinases (MAPKs) activation, which is an inflammation-induced signaling pathway in macrophages. The CJE significantly suppressed the LPS-induced phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38 MAPK. Taken together, the results of this study demonstrate that the CJE inhibits LPS-induced inflammation by blocking the MAPK pathway in macrophages.

Keywords

References

  1. Aggarwal, B. B. & Natarajan, K. 1996. Tumor necrosis factors: developments during the last decade. Eur. Cytokine Netw. 7:93-124.
  2. Ajizian, S. J., English, B. K. & Meals, E. A. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J. Infect. Dis. 179:939-944. https://doi.org/10.1086/314659
  3. Akira, S., Takeda, K. & Kaisho, T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675-680. https://doi.org/10.1038/90609
  4. Athanasiadis, A. 2003. Taxonomy of Rhodophyta with particular reference to Mediterranean species. Bocconea 16:193-198.
  5. Bhat, N. R., Zhang, P., Lee, J. C. & Hogan, E. L. 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J. Neurosci. 18:1633-1641.
  6. Chen, H.-Q., Jin, Z.-Y. & Li, G.-H. 2007. Biochanin A protects dopaminergic neurons against lipopolysaccharide-induced damage through inhibition of microglia activation and proinflammatory factors generation. Neurosci. Lett. 417:112-117. https://doi.org/10.1016/j.neulet.2006.11.045
  7. Coker, R. K. & Laurent, G. J. 1998. Pulmonary fibrosis: cytokines in the balance. Eur. Resp. J. 11:1218-1221. https://doi.org/10.1183/09031936.98.11061218
  8. De Nardin, E. 2001. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann. Periodontol. 6:30-40. https://doi.org/10.1902/annals.2001.6.1.30
  9. Ghosh, S. & Karin, M. 2002. Missing pieces in the NF-${\kappa}$B puzzle. Cell 109(2 Suppl 1):S81-96. https://doi.org/10.1016/S0092-8674(02)00703-1
  10. Hansen, M. B., Nielsen, S. E. & Berg, K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203-210. https://doi.org/10.1016/0022-1759(89)90397-9
  11. Heo, S.-J., Hwang, J.-Y., Choi, J.-I., Lee, S.-H., Park, P.-J., Kang, D.-H., Oh, C., Kim, D.-W., Han, J.-S., Jeon, J.-Y., Kim, H.-J. & Choi, I.-W. 2010a. Protective effect of diphlorethohydroxycarmalol isolated from Ishige okamurae against high glucose-induced-oxidative stress in human umbilical vein endothelial cells. Food Chem. Toxicol. 48:1448-1454. https://doi.org/10.1016/j.fct.2010.02.025
  12. Heo, S.-J., Yoon, W.-J., Kim, K.-N., Ahn, G.-N., Kang, S.-M., Kang, D.-H., Affan, A., Oh, C., Jung, W.-K. & Jeon, Y.-J. 2010b. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 48:2045-2051. https://doi.org/10.1016/j.fct.2010.05.003
  13. Jung, W.-K., Choi, I., Oh, S., Park, S.-G., Seo, S.-K., Lee, S. -W., Lee, D.-S., Heo, S.-J., Jeon, Y.-J., Je, J.-Y., Ahn, C.-B., Kim, J. S., Oh, K. S., Kim, Y.-M., Moon, J. & Choi, I.-W. 2009. Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem. Toxicol. 47:293-297. https://doi.org/10.1016/j.fct.2008.11.012
  14. Kang, K. A., Bu, H. D., Park, D. S., Go, G. M., Jee, Y., Shin, T. & Hyun, J. W. 2005. Antioxidant activity of ethanol extract of Callophyllis japonica. Phytother. Res. 19:506-510. https://doi.org/10.1002/ptr.1692
  15. Kang, S.-I., Shin, H.-S., Kim, H.-M., Yoon, S.-A., Kang, S.-W., Ko, H.-C. & Kim, S.-J. 2012. Callophyllis japonica extract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells. Anim. Cells Syst. 16:447-454. https://doi.org/10.1080/19768354.2012.734257
  16. Kelman, D., Posner, E. K., McDermid, K. J., Tabandera, N. K., Wright, P. R. & Wright, A. D. 2012. Antioxidant activity of Hawaiian marine algae. Mar. Drugs 10:403-416. https://doi.org/10.3390/md10020403
  17. Kim, J., Moon, C., Kim, H., Jeong, J., Lee, J., Kim, J., Hyun, J. W., Park, J. W., Moon, M. Y., Lee, N. H., Kim, S. H., Jee, Y. & Shin, T. 2008a. The radioprotective effects of the hex-ane and ethyl acetate extracts of Callophyllis japonica in mice that undergo whole body irradiation. J. Vet. Sci. 9:281-284. https://doi.org/10.4142/jvs.2008.9.3.281
  18. Kim, K.-N., Heo, S.-J., Yoon, W.-J., Kang, S.-M., Ahn, G., Yi, T.-H. & Jeon, Y.-J. 2010. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-${\kappa}$B and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur. J. Pharmacol. 649:369-375. https://doi.org/10.1016/j.ejphar.2010.09.032
  19. Kim, K.-N., Ko, Y.-J., Kang, M.-C., Yang, H.-M., Roh, S. W., Oda, T., Jeon, Y.-J., Jung, W.-K., Heo, S.-J., Yoon, W.-J. & Kim, D. 2013. Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one mediated by suppression of inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Food Chem. Toxicol. 53:371-375. https://doi.org/10.1016/j.fct.2012.12.021
  20. Kim, K. Y., Nam, K., A., Kurihara, H. & Kim, S. M. 2008b. Potent ${\alpha}$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69:2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007
  21. Kim, S.-Y., Kim, E.-A., Kang, M.-C., Lee, J.-H., Yang, H.-W., Lee, J.-S., Lim, T. I. & Jeon, Y.-J. 2014. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model. Alage 29:165-174. https://doi.org/10.4490/algae.2014.29.2.165
  22. Kim, Y. A., Kong, C. S., Um, Y. R., Lee, J. I., Nam, T. J. & Seo, Y. 2008c. Antioxidant efficacy of extracts from a variety of seaweeds in a cellular system. Ocean Sci. J. 43:31-37. https://doi.org/10.1007/BF03022429
  23. Lee, H.-S., Ryu, D.-S., Lee, G.-S. & Lee, D.-S. 2012. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: suppression of NF-${\kappa}$B activation and MAPK signaling. J. Ethnopharmacol. 140:271-276. https://doi.org/10.1016/j.jep.2012.01.016
  24. Lee, J. H., Lee, T.-K., Kang, R.-S., Shin, H. J. & Lee, H.-S. 2007a. The in vitro antioxidant activities of the bromophenols from the red alga Tichocarpus crinitus and phenolic derivatives. J. Korean Magn. Reson. Soc. 11:56-63.
  25. Li, Y. X., Li, Y., Lee, S.-H., Qian, Z.-J. & Kim, S.-K. 2010. Inhibitors of oxidation and matrix metalloproteinases, floridoside, and D-isofloridoside from marine red alga Laurencia undulata. J. Agric. Food. Chem. 58:578-586. https://doi.org/10.1021/jf902811j
  26. Li, Y.-X., Li, Y., Qian, Z.-J., Kim, M.-M. & Kim, S.-K. 2009. In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free-radical-mediated oxidative systems. J. Microbiol. Biotechnol. 19:1319-1327.
  27. Liu, R. H. & Hotchkiss, J. H. 1995. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat. Res. 339:73-89. https://doi.org/10.1016/0165-1110(95)90004-7
  28. Ma, M., Zhao, J., Wang, S., Li, S., Yang, Y., Shi, J., Fan, X. & He, L. 2006. Bromophenols coupled with methyl gamma-ureidobutyrate and bromophenol sulfates from the red alga Rhodomela confervoides. J. Nat. Prod. 69:206-210. https://doi.org/10.1021/np050343g
  29. Marcus, J. S., Karackattu, S. L., Fleegal, M. A. & Sumners, C. 2003. Cytokine-stimulated inducible nitric oxide synthase expression in astroglia: role of Erk mitogen-activated protein kinase and NF-kappaB. Glia 41:152-160. https://doi.org/10.1002/glia.10168
  30. Okai, Y., Higashi-Okai, K., Nakamura, S., Yano, Y. & Otani, S. 1994. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Cancer Lett. 87:25-32. https://doi.org/10.1016/0304-3835(94)90405-7
  31. Park, D.-S., Lee, K.-H., Kim, H.-C., Ahn, M.-J., Moon, C.-J., Ko, M.-S., Lee, K.-K., Go, G.-M. & Shin, T.-K. 2005. Effects of Callophyllis japonica powder on carbon tetrachloride-induced liver injury in rats. Orient. Pharm. Exp. Med. 5:231-235. https://doi.org/10.3742/OPEM.2005.5.3.231
  32. Park, H. Y., Han, M. H., Park, C., Jin, C.-Y., Kim, G.-Y., Choi, I.-W., Kim, N. D., Nam, T.-J., Kwon, T. K. & Choi, Y. H. 2011. Anti-inflammatory effects of fucoidan through inhibition of NF-kB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem. Toxicol. 49:1745-1752. https://doi.org/10.1016/j.fct.2011.04.020
  33. Park, J.-S., Woo, M.-S., Kim, D.-H., Hyun, J.-W., Kim, W.-K., Lee, J.-C. & Kim, H.-S. 2007. Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Ther. 320:1237-1245.
  34. Park, W. S., Lee, K. S., Chun, J. H., Urm, S. H., Lee, D.-S., Lee, D.-Y., Park, S.-G., Seo, S.-K., Heo, S.-J., Qian, Z.-J., Jung, W.-K. & Choi, I.-W. 2013. Investigation of the antiasthmatic properties of ethanol extract of Callophyllis japonica in mice. Trop. J. Pharm. Res. 12:981-987.
  35. Samarakoon, K. W., Ko, J.-Y., Shah, M. M. R., Lee, J.-H., Kang, M.-C., Kwon, O.-N., Lee, J.-B. & Jeon, Y.-J. 2013. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae 28:111-119. https://doi.org/10.4490/algae.2013.28.1.111
  36. Ulevitch, R. J. & Tobias, P. S. 1999. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 11:19-22. https://doi.org/10.1016/S0952-7915(99)80004-1
  37. Uto, T., Fujii, M. & Hou, D. X. 2005. 6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochem. Pharmacol. 70:1211-1221. https://doi.org/10.1016/j.bcp.2005.07.011
  38. Van, Q., Nayak, B. N., Reimer, M., Jones, P. J. H., Fulcher, R. G. & Rempel, C. B. 2009. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 125:487-493. https://doi.org/10.1016/j.jep.2009.06.026
  39. Wang, W., Okada, Y., Shi, H., Wang, Y. & Okuyama, T. 2005. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J. Nat. Prod. 68:620-622. https://doi.org/10.1021/np040199j
  40. Xu, N., Fan, X., Yan, X., Li, X., Niu, R. & Tseng, C. K. 2003. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62:1221-1224. https://doi.org/10.1016/S0031-9422(03)00004-9
  41. Xu, X., Song, F., Fan, X., Fang, N. & Shi, J. 2009. A novel bromophenol from marine red alga Symphyocladia latiuscula. Chem. Nat. Compd. 45:811-813. https://doi.org/10.1007/s10600-010-9501-0
  42. Yamamoto, I. & Maruyama, H. 1985. Effect of dietary seaweed preparations on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett. 26:241-251. https://doi.org/10.1016/0304-3835(85)90047-3

Cited by

  1. Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses vol.91, 2016, https://doi.org/10.1016/j.ijbiomac.2016.05.111
  2. The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophage vol.21, pp.5, 2018, https://doi.org/10.1186/s41240-018-0091-2
  3. Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review vol.19, pp.6, 2021, https://doi.org/10.3390/md19060317