DOI QR코드

DOI QR Code

Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone

  • Garbary, David J. (Department of Biology, St. Francis Xavier University) ;
  • Miller, Anthony G. (Department of Biology, St. Francis Xavier University) ;
  • Scrosati, Ricardo A. (Department of Biology, St. Francis Xavier University)
  • Received : 2014.07.15
  • Accepted : 2014.11.16
  • Published : 2014.12.15

Abstract

Vertebrata lanosa is an abundant and obligate red algal epiphyte of Ascophyllum nodosum that forms part of a complex and highly integrated symbiotic system that includes the ascomycete, Mycophycias ascophylli. As part of ongoing studies to resolve interactions among species in the symbiosis, we used pulse amplitude modulation fluorimetry of chlorophyll a fluorescence, from photosystem II (PSII), to measure the maximum quantum yield ($F_v/F_m$) of PSII [$QY(II)_{max}$] and relative photosynthetic electron transport rates (rETR), as a function of light intensity, in order to evaluate the photosynthetic capacity of the two algal symbionts in the field and in the laboratory under different treatments. Our primary question was 'Is the ecological integration of these species reflected in a corresponding physiological integration involving photosynthetic process?' In the laboratory we measured changes in $QY(II)_{max}$ in thalli of V. lanosa and A. nodosum over one week periods when maintained together in either attached or detached treatments or when maintained separated from each other. While the $QY(II)_{max}$ of PSII of A. nodosum remained high and showed no significant variation among treatments, V. lanosa showed decreasing performance in the following conditions: V. lanosa attached to A. nodosum, V. lanosa in the same culture, but not attached to A. nodosum, and V. lanosa alone. These results are consistent with observations in which rETR was reduced in V. lanosa maintained alone versus attached to A. nodosum. Values for $QY(II)_{max}$ in V. lanosa measured in the field in fully submerged thalli were similar to those measured in the laboratory when V. lanosa was attached to it obligate host A. nodosum. Our results provide evidence of a physiological association of the epiphyte and its host that reflects the known ecology.

Keywords

References

  1. Brown, N. E., Mitchell, S. C. & Garbary, D. J. 2013. Host selection by larvae of the marine insect Halocladius variabilis: nutritional dependency or escape from predation? J. Mar. Biol. Assoc. U. K. 93:1373-1379. https://doi.org/10.1017/S0025315412001634
  2. Cardinal, A. & Lesage, V. 1992. Distribution of the epiphytes Pilayella littoralis (L.) Kjellm and Polysiphonia lanosa (L.) Tandy on Ascophyllum nodosum (L.) Le Jol. in the Bay of Fundy (N. B. Canada). Cah. Biol. Mar. 33:125-135.
  3. Ciciotte, S. L. & Thomas, R. J. 1997. Carbon exchange between Polysiphonia lanosa (Rhodophyceae) and its brown algal host. Am. J. Bot. 84:1614-1616. https://doi.org/10.2307/2446623
  4. Citharel, J. 1972. Contribution a l'etude du metabolisme azote des algues marines. Utilisation metabolique d'acide glutamique: $^{14}C$ par Ascophyllum nodosum (Linne) Le Jolis et Polysiphonia lanosa (Linne) Tandy. Bot. Mar. 15:157-161.
  5. Craigie, J. S. 2011. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 23:371-393. https://doi.org/10.1007/s10811-010-9560-4
  6. Deckert, R. J. & Garbary, D. J. 2005a. Ascophyllum and its symbionts. VI. Microscopic characterization of the Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) symbiotum. Algae 20:225-232. https://doi.org/10.4490/ALGAE.2005.20.3.225
  7. Deckert, R. J. & Garbary, D. J. 2005b. Ascophyllum and its symbionts. VIII. Interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Elachista fucicola (Phaeophyceae). Algae 20:363-368. https://doi.org/10.4490/ALGAE.2005.20.4.363
  8. Edelstein, T., Chen, L. & McLachlan, J. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Can. J. Bot. 48:621-629. https://doi.org/10.1139/b70-086
  9. Garbary, D. 2009. Why is Ascophyllum nodosum not a lichen? Int. Lichenol. Newsl. 41:34-35.
  10. Garbary, D. J., Beveridge, L. F., Flynn, A. D. & White, K. L. 2012a. Population ecology of Palmaria palmata (Palmariales, Rhodophyta) from harvested and non-harvested shores of Digby Neck, Nova Scotia, Canada. Algae 27:33-42. https://doi.org/10.4490/algae.2012.27.1.033
  11. Garbary, D. J., Burke, J. & Lining, T. 1991. The Ascophyllum/ Polysiphonia/Mycosphaerella symbiosis. II. Aspects of the ecology and symbiosis of Polysiphonia lanosa in Nova Scotia. Bot. Mar. 34:391-401.
  12. Garbary, D. J. & Deckert, R. J. 2001. Three part harmony: Ascophyllum and its symbionts. In Seckback, J. (Ed.) Symbiosis: Mechanisms and Model Systems. Kluwer, Dordrecht, pp. 309-321.
  13. Garbary, D. J., Deckert, R. J. & Hubbard, C. B. 2005a. Ascophyllum and its symbionts. VII. Three-way interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Vertebrata lanosa (Rhodophyta). Algae 20:353-361. https://doi.org/10.4490/ALGAE.2005.20.4.353
  14. Garbary, D. J., Galway, M. E., Lord, C. E. & Gunawardina, A. 2012b. Programmed cell death in multicellular algae. In Heimann, K. & Katsaros, C. (Eds.) Advances in Algal Cell Biology. DeGruyter, Berlin, pp. 1-19.
  15. Garbary, D. J. & Gautam, A. 1989. The Ascophyllum, Polysiphonia, Mycosphaerella symbiosis. I. Population ecology of Mycosphaerella from Nova Scotia. Bot. Mar. 32:181-186.
  16. Garbary, D. J., Jamieson, M. M., Fraser, S. J., Ferguson, C. A. & Cranston, P. S. 2005b. Ascophyllum (Phaeophyceae) and its symbionts. IX. A novel symbiosis between Halocladius variabilis (Chironomidae, Insecta) and Elachista fucicola (Elachistaceae, Phaeophyceae) from marine rocky shores of Nova Scotia. Symbiosis 40:61-68.
  17. Garbary, D. J., Jamieson, M. M. & Taylor, B. R. 2009a. Population ecology of the marine insect Halocladius variabilis (Diptera: Chironomidae) in the rocky intertidal zone of Nova Scotia, Canada. Mar. Ecol. Prog. Ser. 376:193-202. https://doi.org/10.3354/meps07676
  18. Garbary, D. J. & Kim, K. Y. 2005. Anatomical differentiation and photosynthetic adaptation in brown algae. Algae 20:233-238. https://doi.org/10.4490/ALGAE.2005.20.3.233
  19. Garbary, D. J., Lawson, G., Clement, K. & Galway, M. E. 2009b. Cell division in the absence of mitosis: the unusual case of the fucoid Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Algae 24:239-248. https://doi.org/10.4490/ALGAE.2009.24.4.239
  20. Garbary, D. J. & London, J. F. 1995. The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. V. Fungal infection protects A. nosodum from desiccation. Bot. Mar. 38:529-533.
  21. Garbary, D. J. & MacDonald, K. A. 1995. The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. IV. Mutualism in the Ascophyllum/Mycosphaerella interaction. Bot. Mar. 38:221-225.
  22. Garbary, D. J. & Tarakhovskaya, E. R. 2013. Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russia. Algae 28:267-280. https://doi.org/10.4490/algae.2013.28.3.267
  23. Gauna, M. C., Parodi, E. R., Caceres, E. J. & Garbary, D. J. 2011. Vertebrata lanosa on Ascophyllum nodosum: effects on reproductive and vegetative structures. Eur. J. Phycol. 46(Suppl. 1):174.
  24. Genty, B., Briantais, J.-M. & Baker, N. R. 1989. The relationship between the quantum yield of photosynthesis, electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  25. Guiry, M. D., Guiry, G. M., Morrison, L., Rindi, F., Miranda, S. V., Mathieson, A. C., Parker, B. C., Langangen, A., John, D. M., Barbara, I., Carter, C. F., Kuipers, P. & Garbary, D. J. 2014. AlgaeBase: an on-line resource for algae. Cryptogam. Algol. 35:105-115. https://doi.org/10.7872/crya.v35.iss2.2014.105
  26. Halat, L. S., Galway, M. E. & Garbary, D. J. 2013. A self-cleaning seaweed: cell division without mitosis in Ascophyllum nodosum. Phycologia 52(Suppl.):39.
  27. Harlin, M. M. 1973. Transfer of products between epiphytic marine algae and host plants. J. Phycol. 9:243-248.
  28. Harlin, M. M. & Craigie, J. S. 1975. The distribution of photosynthate in Ascophyllum nodosum as it relates to epiphytic Polysiphonia lanosa. J. Phycol. 11:109-113.
  29. Irvine, L. M. 1983. Seaweeds of the British Isles, Vol. 1. Rhodophyta, Part 2A. Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, 115 pp.
  30. Kaczmarska, I. & Dowe, L. L. 1997. Reproductive biology of the red alga Polysiphonia lanosa (Ceramiales) in the Bay of Fundy, Canada. Mar. Biol. 128:695-703. https://doi.org/10.1007/s002270050137
  31. Kim, K. Y. & Garbary, D. J. 2009. Form, function and longevity in fucoid thalli: chlorophyll a fluorescence differentiation of Ascophyllum nodosum, Fucus vesiculosus and F. distichus (Phaeophyceae). Algae 24:93-104. https://doi.org/10.4490/ALGAE.2009.24.2.093
  32. Kim, K. Y., Jeong, H. J., Main, H. P. & Garbary, D. J. 2006. Fluorescence and photosynthetic competency in single eggs and embryos of Ascophyllum nodosum (Phaeophyceae). Phycologia 45:331-336. https://doi.org/10.2216/05-40.1
  33. Kohlmeyer, J. & Kohlmeyer, E. 1972. Is Ascophyllum nodosum lichenized? Bot. Mar. 15:109-112.
  34. Kromkamp, J. C. & Forster, R. M. 2003. The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur. J. Phycol. 38:103-112. https://doi.org/10.1080/0967026031000094094
  35. Levin, P. S. & Mathieson, A. C. 1991. Variation in a host-epiphyte relationship along a wave exposure gradient. Mar. Ecol. Prog. Ser. 77:271-278. https://doi.org/10.3354/meps077271
  36. Lining, T. & Garbary, D. J. 1992. The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. III. Experimental studies on the interactions between P. lanosa and A. nodosum. Bot. Mar. 35:341-349.
  37. Linnaeus, C. 1767. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus & differentiis. Tomus II. Editio duodecima, reformata. Impensis Direct, Laurentii Salvii, Homiae [Stockholm], pp. 533-1327.
  38. Longtin, C. M. & Scrosati, R. A. 2009. Role of surface wounds and brown algal epiphytes in the colonization of Ascophyllum nodosum (Phaeophyceae) fronds by Vertebrata lanosa (Rhodophyta). J. Phycol. 45:535-539. https://doi.org/10.1111/j.1529-8817.2009.00672.x
  39. Longtin, C. M., Scrosati, R. A., Whalen, G. B. & Garbary, D. J. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J. Phycol. 45:820-827. https://doi.org/10.1111/j.1529-8817.2009.00710.x
  40. Papageorgiou, G. C. & Govindjee. 2004. Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration. Vol. 19. Springer, Dordrecht, 820 pp.
  41. Pearson, G. A. & Evans, L. V. 1990. Settlement and survival of Polysiphonia lanosa (Ceramiales) spores on Ascophyllum nodosum and Fucus vesiculosus (Fucales). J. Phycol. 26:597-603. https://doi.org/10.1111/j.0022-3646.1990.00597.x
  42. Pearson, G. A. & Evans, L. V. 1991. Stimulation of secondary rhizoid production in Polysiphonia lanosa by brown algal tissues and exudates. Br. Phycol. J. 26:93-94.
  43. Penot, M. 1974. Ionic exchange between tissues of Ascophyllum nodosum (L.) Le Jolis and Polysiphonia lanosa (L.) Tandy. Z. Pflanzenphysiol. 73:125-131. https://doi.org/10.1016/S0044-328X(74)80083-8
  44. Penot, M., Hourmant, A. & Penot, M. 1993. Comparative study of metabolism and forms of transport of phosphate between Ascophyllum nodosum and Polysiphonia lanosa. Physiol. Plant. 87:291-296. https://doi.org/10.1111/j.1399-3054.1993.tb01733.x
  45. Rawlence, D. J. 1972. An ultrastructural study of the relationship between rhizoids of Polysiphonia lanosa (L.) Tandy (Rhodophyceae) and tissue of Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Phycologia 11:279-290. https://doi.org/10.2216/i0031-8884-11-3-279.1
  46. Scrosati, R. A. & Longtin, C. M. 2010. Field evaluation of epiphyte recruitment (Vertebrata lanosa, Rhodophyta) in different microsite types on host fronds (Ascophyllum nodosum, Phaeophyceae). Phycol. Res. 58:138-142. https://doi.org/10.1111/j.1440-1835.2010.00571.x
  47. Tarakhovskaya, E. R. & Garbary, D. J. 2009. Halocladius variabilis (Diptera: Chironomidae): a marine insect symbiotic with seaweeds from the White Sea, Russia. J. Mar. Biol. Assoc. U. K. 89:1381-1385. https://doi.org/10.1017/S0025315409000071
  48. Tarakhovskaya, E. R., Kang, E. J., Kim, K. Y. & Garbary, D. J. 2013. Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. (Phaeophyceae). Russ. J. Plant Physiol. 60:176-183. https://doi.org/10.1134/S1021443713020192
  49. Tarakhovskaya, E. R., Maslov, Y. I. & Shishova, M. F. 2007. Phytohormones in algae. Russ. J. Plant Physiol. 54:163-170. https://doi.org/10.1134/S1021443707020021
  50. Toxopeus, J., Kozera, C. J., O'Leary, S. J. B. & Garbary, D. J. 2011. A reclassification of Mycophycias ascophylli (Ascomycota) based on nuclear large ribosomal subunit DNA sequences. Bot. Mar. 54:325-334.
  51. Turner, C. H. C. & Evans, L. V. 1977. Physiological studies on the relationship between Ascophyllum nodosum and Polysiphonia lanosa. New Phytol. 79:363-371. https://doi.org/10.1111/j.1469-8137.1977.tb02216.x
  52. Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R. & Prithiviraj, B. 2012. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 32:324-339.
  53. Walz, H. 1998. Underwater fluorometer diving-PAM: a handbook of operation. Heinz Walz GmbH, Effeltrich, 104 pp.
  54. Xu, H., Deckert, R. J. & Garbary, D. J. 2008. Ascophyllum and its symbionts. X. Ultrastructure of the interaction between A. nodosum (Phaeophyceae) and Mycophycias ascophylli (Ascomycetes). Botany 86:185-193. https://doi.org/10.1139/B07-122

Cited by

  1. Epidermal shedding inAscophyllum nodosum(Phaeophyceae): seasonality, productivity and relationship to harvesting vol.54, pp.6, 2015, https://doi.org/10.2216/15-32.1
  2. Harvesting Ascophyllum nodosum (Phaeophyceae) reduces the abundance of its host-specific epiphyte Vertebrata lanosa (Rhodophyta) vol.60, pp.3, 2017, https://doi.org/10.1515/bot-2016-0074
  3. Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) to two endophytes, Mikrosyphar zosterae Kuckuck (Ectocarpales, Ochrophyta) and Ulvella ramosa (N. L. Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture vol.31, pp.4, 2016, https://doi.org/10.4490/algae.2016.31.12.9
  4. The unique giant Irish moss (Chondrus crispus) from Basin Head: Health assessment in relation to reference sites on Prince Edward Island pp.1916-2804, 2018, https://doi.org/10.1139/cjb-2018-0081
  5. Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs) vol.147, pp.None, 2014, https://doi.org/10.1016/j.marenvres.2019.04.001
  6. The phylogenetic position of the morphologically unusual Pleurostichidium falkenbergii (Rhodomelaceae, Rhodophyta) based on plastid phylogenomics vol.58, pp.3, 2019, https://doi.org/10.1080/00318884.2019.1574462
  7. A field study of the edible red alga Vertebrata lanosa (Rhodophyta) vol.32, pp.1, 2020, https://doi.org/10.1007/s10811-019-01934-2
  8. Algal endophytes of commercial Chondrus ocellatus (Gigartinaceae, Rhodophyta) from different wild populations in Korea vol.32, pp.1, 2020, https://doi.org/10.1007/s10811-019-01987-3