DOI QR코드

DOI QR Code

Preparation and Properties of Self-Assembled Discotic Liquid Crystals Formed by Hydrogen Bonding

수소결합에 의한 자기조립된 원반형 액정의 제조와 특성

  • Lee, Jun Hyup (Department of Chemical Engineering, Myongji University)
  • 이준협 (명지대학교 화학공학과)
  • Received : 2014.11.17
  • Accepted : 2014.12.05
  • Published : 2014.12.30

Abstract

New self-assembled discotic liquid crystals have been prepared through single hydrogen bonding between phenol and pyridine moieties, and their liquid crystalline properties were investigated. For the construction of discotic structure, we used phloroglucinol as a core molecule and trans-4-alkoxy-4'-stilbazoles with systematically varied alkyl chain lengths as peripheral units. FTIR results showed that the intermolecular hydrogen bonds between core and peripheral molecules are successfully formed, and the stability of the hydrogen bond is strongly influenced by molecular ordering. Discotic complexes exhibited different liquid crystalline phases depending on the length of alkyl chains around the discotic mesogen. The discotic complexes with longer alkyl chains showed hexagonal columnar mesophases, while the other complexes formed nematic columnar mesophases. These results indicated that the type of mesophase structure was strongly dependent on the alkyl chain length around the aromatic core.

페놀과 피리딘 간의 단일 수소결합을 이용하여 새로운 형태의 자기 집합된 원반형 액정을 제조하고 그 액정 특성을 조사하였다. 원반형 구조 설계를 위해 phloroglucinol을 중심부 분자로, 체계적으로 알킬사슬 길이를 변화시킨 trans-4-alkoxy-4'-stilbazole을 주변 물질로 사용하였다. 적외선 분광 분석을 통해 중심부 분자와 주변 물질 사이의 분자간 수소결합이 성공적으로 형성됨을 확인하였고, 또한 수소결합의 안정성이 분자 정렬에 의해 크게 영향을 받음을 확인하였다. 자기 집합된 원반형 액정 복합체는 원반형 메소겐 주위의 알킬 사슬 길이에 따라 다른 액정상들을 나타내었다. 긴 알킬사슬을 함유하는 액정 복합체의 경우 육방형 컬럼상이 나타났으며, 상대적으로 짧은 사슬을 갖는 다른 액정 복합체에서는 네마틱 컬럼상이 형성되었다. 이는 자기 집합된 원반형 액정 복합체의 액정상 구조가 원반형 핵 단위 주변의 알킬사슬 길이에 의해 크게 영향을 받음을 의미하였다.

Keywords

References

  1. S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, Pramana, 9, 471 (1977). https://doi.org/10.1007/BF02846252
  2. N. Boden, R. J. Bushby, J. Clements, M. V. Jesudason, P. F. Knowles, and G. Williams, Chem. Phys. Lett., 152, 94 (1988). https://doi.org/10.1016/0009-2614(88)87334-2
  3. D. Adam, P. Schuhmacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K. H. Etzbach, H. Ringsdorf, and D. Haarer, Nature, 371, 141 (1994). https://doi.org/10.1038/371141a0
  4. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, and J. D. MacKenzie, Science, 293, 1119 (2001). https://doi.org/10.1126/science.293.5532.1119
  5. A. M. Levelut, J. Chim. Phys., 80, 149 (1983). https://doi.org/10.1051/jcp/1983800149
  6. A. N. Cammidge and R. J. Bushby, in Handbook of Liquid Crystals, D. Demus, J. W. Goodby, G. W. Gray, H. W. Spiess, and V. Vill Ed., 2B, p 693, Wiley-VCH, New York (1998).
  7. R. Kleppinger, C. P. Lillya, and C Yang, J. Am. Chem. Soc., 119, 4097 (1997). https://doi.org/10.1021/ja9631108
  8. M. Suarez, J. M. Lehn, S. C. Zimmerman, A. Skoulios, and B. Heinrich, J. Am. Chem. Soc., 120, 9526 (1998). https://doi.org/10.1021/ja981722h
  9. K. Kanie, M. Nishii, T. Yasuda, T. Taki, S. Ujiie, and T. Kato, J. Mater. Chem., 11, 2875 (2001). https://doi.org/10.1039/b103168f
  10. S. Jin, Y. Ma, S. C. Zimmerman, and S. Z. D. Cheng, Chem. Mater., 16, 2975 (2004). https://doi.org/10.1021/cm0498988
  11. Y. Kamikawa, M. Nishii, and T. Kato, Chem.-Eur. J., 10, 5942 (2004). https://doi.org/10.1002/chem.200400424
  12. D. Goldmann, R. Dietel, D. Janietz, C. Schmidt, and J. H. Wendorff, Liq. Cryst., 24, 407 (1998). https://doi.org/10.1080/026782998207226
  13. A. Kraft, A. Reichert, and R. Kleppinger, Chem. Commun., 1015 (2000).
  14. H. K. Lee, H. Lee, Y. H. Ko, Y. J. Chang, N. K. Oh, W. C. Zin, and K. Kim, Angew. Chem. Int. Ed., 40, 2669 (2001). https://doi.org/10.1002/1521-3773(20010716)40:14<2669::AID-ANIE2669>3.0.CO;2-Q
  15. K. Willis, D. J. Price, H. Adams, G. Ungar, and D. W. Bruce, J. Mater. Chem., 5, 2195 (1995). https://doi.org/10.1039/jm9950502195
  16. A. Sato, T. Kato, and T. Uryu, J. Polym. Sci. Part A: Polym. Chem., 34, 503 (1996). https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<503::AID-POLA20>3.0.CO;2-S
  17. D. J. Price, K. Willis, T. Richardson, G. Ungar, and D. W. Bruce, J. Mater. Chem., 7, 883 (1997). https://doi.org/10.1039/a700575j
  18. Y. Matsunaga, N. Miyajima, Y. Nakayasu, and S. Sakai, Bull. Chem. Soc. Jpn., 61, 207 (1988). https://doi.org/10.1246/bcsj.61.207
  19. U. Kumar, T. Kato, and J. M. J. Frechet, J. Am. Chem. Soc., 114, 6630 (1992). https://doi.org/10.1021/ja00043a004
  20. T. Kato and J. M. J. Frechet, Macromol. Symp., 98, 311 (1995).
  21. D. W. Bruce, D. A. Dunmur, E. Lalinde, P. M. Maitlis, and P. Styring, Liq. Cryst., 3, 385 (1988). https://doi.org/10.1080/02678298808086385
  22. T. Kato, J. M. J. Frechet, P. G. Wilson, T. Saito, T. Uryu, A. Fujishima, C. Jin, and F. Kaneuchi, Chem. Mater., 5, 1094 (1993). https://doi.org/10.1021/cm00032a012
  23. H. Ringsdorf, R. Wustefeld, E. Zerta, M. Ebert, and J. H. Wendorff, Angew. Chem. Int. Ed., 28, 914 (1989). https://doi.org/10.1002/anie.198909141
  24. P. H. J. Kouwer, W. F. Jager, W. J. Mijs, and S. J. Picken, Macromolecules, 33, 4336 (2000). https://doi.org/10.1021/ma991808a