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Abstract. The object of the present paper is to study almost pseudo conharmonically

symmetric manifolds. Some geometric properties of almost pseudo conharmonically sym-

metric manifolds have been studied under certain curvature conditions. Finally, we give

three examples of almost pseudo conharmonically symmetric manifolds.

1. Introduction

As is well known, symmetric spaces play an important role in differential geom-
etry. The study of Riemannian symmetric spaces was initiated in the late twenties
by Cartan [5], who, in particular, obtained a classification of those spaces.
Let (Mn, g), (n = dimM) be a Riemannian manifold, i.e., a manifold M with the
Riemannian metric g and let∇ be the Levi-Civita connection of (Mn, g). A Rieman-
nian manifold is called locally symmetric [5] if ∇R = 0, where R is the Riemannian
curvature tensor of (Mn, g). This condition of local symmetry is equivalent to the
fact that at every point P ∈ M , the local geodesic symmetry F (P ) is an isometry
[18]. The class of Riemannian symmetric manifolds is very natural generalization of
the class of manifolds of constant curvature. During the last six decades the notion
of locally symmetric manifolds have been weakened by many authors in several ways
to a different extent such as conformally symmetric manifolds by Chaki and Gupta
[6], recurrent manifolds introduced by Walker [25], conformally recurrent manifolds
by Adati and Miyazawa [2], conformally symmetric Ricci-recurrent spaces by Roter
[22], pseudo symmetric manifolds introduced by Chaki [7] etc. The notion of weakly
symmetric and weakly projective symmetric manifolds were introduced by Tamassy
and Binh [24] and later Binh [4] studied decomposable weakly symmetric manifolds.
A non-flat Riemannian manifold (Mn, g)(n > 2) is called weakly symmetricif the
curvature tensor R of type (1,3) satisfies the condition:

(∇XR)(Y,Z)W = A(X)R(Y,Z)W + B(Y )R(X, Z)W + D(Z)R(Y, X)W
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+E(W )R(Y, Z)X + g(R(Y, Z)W,X)P,

where ∇ denotes the Levi-Civita connection on (Mn, g) and A, B, D, E and P
are 1-forms and a vector field, respectively which are non-zero simultaneously. Such
a manifold is denoted by (WS)n. Weakly symmetric manifolds have been studied
by several authors ([8], [9],[20], [21]) and many others.

A non-flat Riemannian manifold (Mn, g), (n > 2) is said to be a pseudo sym-
metric manifold [7] if its curvature tensor satisfies the condition

(∇XR)(Y, Z)W = 2A(X)R(Y, Z)W + A(Y )R(X, Z)W
+A(Z)R(Y, X)W + A(W )R(Y, Z)X + g(R(Y, Z)W,X)P,(1.1)

where A is a non-zero 1-form, P is a vector field defined by

(1.2) g(X,P ) = A(X),

for all X and ∇ denotes the operator of covariant differentiation with respect to the
metric tensor g. The 1-form A is called the associated 1-form of the manifold. If
A = 0, then the manifold reduces to a symmetric manifold in the sense of Cartan.
An n-dimensional pseudo symmetric manifold is denoted by (PS)n. This is to be
noted that the notion of pseudo symmetric manifold studied in particular by Deszcz
[15] is different from that of Chaki [7].

In a recent paper, De and Gazi [10] introduced the notion of almost pseudo
symmetric manifolds. A Riemannian manifold(Mn, g), (n > 2) is said to be almost
pseudo symmetric if its curvature tensor Ŕ of type (0,4) satisfies the condition:

(∇XŔ)(Y, Z, U, V ) = [A(X) + B(X)]Ŕ(Y, Z, U, V ) + A(Y )Ŕ(X, Z, U, V )
+A(Z)Ŕ(Y, X,U, V ) + A(U)Ŕ(Y, Z,X, V ) + A(V )Ŕ(Y,Z, U,X),(1.3)

where A, B are non-zero 1-forms defined by g(X,P ) = A(X), g(X,Q) = B(X), for
all vector fields X, ∇ denotes the operator of covariant differentiation with respect
to the metric g, Ŕ is defined by Ŕ(X, Y, Z, W ) = g(R(X, Y )Z,W )), where R is
the curvature tensor of type (1,3). The 1-forms A and B are called the associated
1-forms of the manifold . Such a manifold is denoted by (APS)n. Here the vector
fields P and Q are called the basic vector fields of the manifold corresponding to
the associated 1-forms A and B respectively.
If in the above equation B = A, then the (APS)n reduces to a(PS)n. In subsequent
papers ([11], [12]) De and Gazi studied almost pseudo conformally symmetric man-
ifolds and conformally flat almost pseudo Ricci symmetric manifolds.
It may be mentioned that (PS)n is a particular case of an (APS)n, but(WS)n is
not a particular case of an (APS)n.
Let M be a semi-Riemannian manifold of dimension n equipped with two metric g
and ḡ related by

(1.4) ḡ(X,Y ) = σ2g(X, Y ),
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where σ is a positive smooth function on M. If a transformation of M does not
change the angle between two tangent vectors at a point with respect to g and ḡ,
then such a transformation is said to be a conformal transformation of the metrics
on the manifold [3].
It is known that a harmonic function is defined as a function whose Laplacian van-
ishes. A harmonic function is not invariant, in general. The condition under which a
harmonic function remains invariant have been studied by Ishii [17] who introduced
the conharmonic trasformation as a subgroup of the conformal transformation group
satisfying the condition

(1.5) σi,i +σ,i σi, = 0,

where comma denotes the covariant differentiation with respect to the metric g.
A (0,4) type tensor C̃(Y, Z, U, V ) which remains invariant under conharmonic trans-
formation for an n-dimensional Riemannian manifold Mn is given by

C̃(Y, Z, U, V ) = Ŕ(Y,Z, U, V )− 1
n− 2

[S(Z,U)g(Y, V )− S(Y, U)g(Z, V )

+S(Y, V )g(Z, U)− S(Z, V )g(Y, U)],(1.6)

where Ŕ denotes the Riemannian curvature tensor of type (0,4) defined by

(1.7) Ŕ(Y, Z, U, V ) = g(R(Y, Z)U, V ),

where R is the Riemannian curvature tensor of type (1,3) and S denotes the Ricci
tensor of type (0,2) respectively.

The curvature tensor defined by (1.6) is known as conharmonic curvature tensor.
A manifold whose conharmonic curvature vanishes at every point of the manifold
is called conharmonically flat manifold. Thus this tensor represents the deviation
of the manifold from conharmonic flatness. It satisfies all the symmetric properties
of the Riemannian curvature tensor Ŕ. There are many physical applications of
the tensor C̃. For example, in [1], Abdussattar and Dwivedi showed that sufficient
condition for a space-time to be conharmonic to a flat space-time is that the tensor
C̃ vanishes identically. A conharmonically flat space-time is either empty in which
case it is flat or filled with a distribution represented by energy momentum tensor
T possessing the algebraic structure of an electromagnetic field and conformal to a
flat space-time [1]. Also he described the gravitational field due to a distribution of
pure radiation in presence of disordered radiation by means of spherically symmetric
conharmonically flat space-time. Conharmonic curvature tensor have been studied
by Siddiqui and Ahsan [23], Özgür [19], and many others. The object of the present
paper is to study a type of non-flat Riemannian manifold(Mn, g), (n > 2) whose
conharmonic curvature tensor C̃ of type (0,4) satisfies the condition:

(∇XC̃)(Y, Z, U, V ) = [A(X) + B(X)]C̃(Y, Z, U, V )
+A(Y )C̃(X,Z, U, V ) + A(Z)C̃(Y, X,U, V )
+A(U)C̃(Y, Z,X, V ) + A(V )C̃(Y,Z, U,X),(1.8)
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where A and B are non-zero 1-forms called associated 1-forms, defined by
g(X,P ) = A(X) , g(X,Q) = B(X) and P , Q are called the basic vector fields

of the manifold corresponding to the associated 1-forms A and B respectively. Such
a manifold shall be called an almost pseudo conharmonically symmetric manifold
and an n-dimensional manifold of this kind shall be denoted by (APC̃S)n). If
A = B, then (APC̃S)n reduces to a (PC̃S)n. In a recent paper De and Mallick [14]
studied almost pseudo concircularly symmetric manifolds. In this connection it may
be mentioned that De and De [13] studied almost pseudo-conformally symmetric
Ricci-recurrent manifolds with application to relativity.
Motivated by the above studies in the present paper we have studied a type of
non-flat Riemannian manifold. The paper is organized as follows:
After preliminaries in Section 2, we study (APC̃S)n(n > 2) satisfying Codazzi type
of Ricci tensor. Section 4 is devoted to study Einstein (APC̃S)n. In Section 5, we
study Ricci symmetric (APC̃S)n(n > 2). Finally, non-trivial examples of (APC̃S)n

have been constructed.

2. Preliminaries

In this section, some formulas are derived, which will be useful to the study of
(APC̃S)n. Let {ei} be an orthonormal basis of the tangent space at each point of
the manifold where 1 ≤ i ≤ n.

Now from (1.6) we have

(2.1) Σn
i=1C̃(Y, Z, ei, ei) = 0 = Σn

i=1C̃(ei, ei, U, V )

and

Σn
i=1C̃(ei, Z, U, ei) = Σn

i=1C̃(Z, ei, ei, U)

= − r

(n− 2)
g(Z, U),(2.2)

where r = Σn
i=1S(ei, ei) is the scalar curvature. Also from (1.6) it follows that

(2.3) (i) C̃(X,Y, Z, U) = −C̃(Y,X, Z, U),

(ii) C̃(X,Y, Z, U) = −C̃(X, Y, U, Z),

(iii) C̃(X, Y, Z, U) = C̃(Z, U,X, Y ),

(iv) C̃(X,Y, Z, U) + C̃(Y, Z, X,U) + C̃(Z, X, Y, U) = 0.

3. An Almost Pseudo Conharmonically Symmetric Manifold of Dimen-
sion n, (n > 2) with Codazzi Type of Ricci Tensor

A.Gray [16] introduced two classes of Riemannian manifolds determined by the
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covariant differentiation of Ricci tensor. The class A consisting of all Riemannian
manifolds whose Ricci tensor S is a Codazzi tensor, that is,

(∇XS)(Y, Z) = (∇Y S)(X,Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic
parallel, that is,

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0

Suppose that the manifold under consideration satiafies Codazzi type of Ricci tensor.
That is,

(3.1) (∇Y S)(Z, W ) = (∇ZS)(Y,W ).

Now from (1.6) we get

(∇XC̃)(Y, Z, U, V ) = (∇XŔ)(Y, Z, U, V )− 1
n− 2

[(∇XS)(Z, U)g(Y, V )

−(∇XS)(Y,U)g(Z, V ) + (∇XS)(Y, V )g(Z, U)
−(∇XS)(Z, V )g(Y, U)].(3.2)

Then using (3.2) we get

(∇XC̃)(Y,Z, U, V ) + (∇Y C̃)(Z, X, U, V ) + (∇ZC̃)(X, Y, U, V )
= [(∇XŔ)(Y, Z, U, V ) + (∇Y Ŕ)(Z, X, U, V ) + (∇ZŔ)(X, Y, U, V )]

− 1
n− 2

[{∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y,U)}
+{(∇Y S)(X, U)g(Z, V )− (∇Y S)(Z, U)g(X,V )
+(∇Y S)(Z, V )g(X,U)− (∇Y S)(X, V )g(Z,U)}
+{(∇ZS)(Y,U)g(X, V )− (∇ZS)(X, U)g(Y, V )
+(∇ZS)(X,V )g(Y, U)− (∇ZS)(Y, V )g(X, U)}].(3.3)

We also have 2nd Bianchi identity for (0,4) Riemannian curvature tensor Ŕ as
follows:

(3.4) (∇XŔ)(Y, Z, U, V ) + (∇Y Ŕ)(Z, X,U, V ) + (∇ZŔ)(X, Y, U, V ) = 0.

Using (3.1) and (3.4) in (3.3) we get

(3.5) (∇XC̃)(Y, Z, U, V ) + (∇Y C̃)(Z,X, U, V ) + (∇ZC̃)(X,Y, U, V ) = 0.

Hence we have the following theorem
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Theorem 3.1. In an almost pseudo conharmonically symmetric manifold of dimen-
sion n(n > 2) satisfying Codazzi type of Ricci tensor, the conharmonic curvature
tensor satisfies Bianchi’s 2nd identity.

It is well known that the conharmonic curvature tensor satisfies the condition

(3.6) C̃(X, Y )Z + C̃(Y, Z)X + C̃(Z, X)Y = 0,

and

(3.7) C̃(X, Y )Z = −C̃(Y, X)Z.

But, in general, the conharmonic curvature tensor C̃(Y, Z, U, V ) does not satisfy
Bianchi’s 2nd identity.

(3.8) (∇XC̃)(Y, Z, U, V ) + (∇Y C̃)(Z, X, U, V ) + (∇ZC̃)(X, Y, U, V ) = 0.

We suppose that the condition (3.8) holds in the investigated almost pseudo con-
harmonically symmetric manifold. Now using (1.8), (3.6), (3.7) in (3.8) we get

[A(X)−B(X)]C̃(Y,Z, U, V ) + [A(Y )−B(Y )]C̃(Z, X,U, V ) + [A(Z)
−B(Z)]C̃(X, Y, U, V ) = 0

which implies

α(X)C̃(Y, Z, U, V ) + α(Y )C̃(Z, X, U, V )
+α(Z)C̃(X, Y, U, V ) = 0,(3.9)

where α(X) = A(X)−B(X) and ρ is a vector field defined by

(3.10) g(X, ρ) = α(X).

Contracting over Y and V in (3.9) we get

α(X)[− r

n− 2
g(Z,U)] + α(C̃(Z,X)U) + α(Z)[

r

n− 2
g(X, U)] = 0

or,

(3.11) (
r

n− 2
)[−α(X)g(Z, U) + α(Z)g(X, U)] + α(C̃(Z,X)U) = 0.

Again contracting over Z and U we get

(
r

n− 2
)[−nα(X) + α(X)] +

r

n− 2
α(X) = 0

or,
r

n− 2
[2α(X)− nα(X)] = 0
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or,

(3.12) rα(X) = 0.

Hence either r = 0 or α(X) = 0. Hence we have the following theorem:

Theorem 3.2. If in an almost pseudo conharmonically symmetric manifold with
non-zero scalar curvature, the conharmonic curvature tensor C̃ satisfies Bianchi’s
2nd identity, then the manifold is a pseudo conharmonically symmetric manifold.

From Theorem 3.1 and Theorem 3.2 we can state the following:

Corollary 3.1. An almost pseudo conharmonically symmetric manifold with non-
zero scalar curvature satisfying Codazzi type of Ricci tensor is a pseudo conhar-
monically symmetric manifold.

4. Einstein (APC̃S)n(n > 2)

This section deals with an (APC̃S)n defined by (1.8) which is Einstein manifold.
If an (APC̃S)n is Einstein, then

(4.1) S(X, Y ) =
r

n
g(X,Y ),

where r is a constant.
Therefore,

(4.2) (∇ZS)(X,Y ) = 0

and

(4.3) dr = 0.

Using (4.1) and (4.2) we get from (1.6)

(4.4) (∇XC̃)(Y,Z, U, V ) = (∇XŔ)(Y,Z, U, V ).

which implies

[A(X) + B(X)]C̃(Y, Z, U, V ) + A(Y )C̃(X,Z, U, V )
+A(Z)C̃(Y, X, U, V ) + A(U)C̃(Y,Z, X, V )

+A(V )C̃(Y, Z, U,X) = [A(X) + B(X)]Ŕ(Y,Z, U, V )
A(Y )Ŕ(X, Z,U, V ) + A(Z)Ŕ(Y, X, U, V )

+A(U)Ŕ(Y, Z, X, V ) + A(V )Ŕ(Y, Z, U,X).(4.5)

Again using (4.1) in (1.6) we get

C̃(Y,Z, U, V ) = Ŕ(Y,Z, U, V )− 2r

n(n− 2)
[g(Z,U)g(Y, V )

−g(Z, V )g(Y, U)].(4.6)
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Using (4.6) in (4.5) we get

2r

n(n− 2)
[{A(X) + B(X)}{g(Z, U)g(Y, V )− g(Y, U)g(Z, V )}

+A(Y ){g(Z, U)g(X,V )− g(X, U)g(Z, V )}
+A(Z){g(X,U)g(Y, V )− g(Y, U)g(X, V )}
+A(U){g(Z,X)g(Y, V )− g(Y,X)g(Z, V )}

+A(V ){g(Z, U)g(Y, X)− g(Y,U)g(Z, X)} = 0,

that is,

r[{A(X) + B(X)}{g(Z, U)g(Y, V )− g(Y,U)g(Z, V )}
+A(Y ){g(Z, U)g(X,V )− g(X, U)g(Z, V )}
+A(Z){g(X,U)g(Y, V )− g(Y, U)g(X, V )}
+A(U){g(Z,X)g(Y, V )− g(Y, X)g(Z, V )}

+A(V ){g(Z, U)g(Y, X)− g(Y, U)g(Z, X)}] = 0.(4.7)

Putting Y = V = ei in (4.7), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

r[(n− 1){A(X) + B(X)}g(Z, U) + A(X)g(Z, U)
−A(Z)g(X, U) + (n− 1){A(Z)g(X,U) + A(U)g(Z, X)}

+A(X)g(Z, U)−A(U)g(Z,X)] = 0

or,

r[{(n + 1)A(X) + (n− 1)B(X)}g(Z, U)
+(n− 2){A(Z)g(X,U) + A(U)g(Z, X)}] = 0.(4.8)

Again, putting Z = U = ei in (4.8) where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n, we get

r[n(n + 1)A(X) + n(n− 1)B(X) + 2(n− 2)A(X)] = 0

or,
r(n− 1)[(n + 4)A(X) + nB(X)] = 0

or,

(4.9) r[(n + 4)A(X) + nB(X)] = 0.

Again putting X = Z = ei in (4.8) ,where {ei} is an orthonormal basis of the
tangent space at each point of the manifold and then taking summation over i ,
1 ≤ i ≤ n we get

r[(n + 1)A(U) + (n− 1)B(U) + (n− 2)A(U) + n(n− 2)A(U)] = 0
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or,

(4.10) r[(n + 1)A(U) + B(U)] = 0.

Replacing U by X we get

(4.11) r[(n + 1)A(X) + B(X)] = 0.

Again putting X = U = ei in (4.8) , where {ei} is an orthonormal basis of the
tangent space at each point of the manifold and then taking summation over i,
1 ≤ i ≤ n we get

r[(n + 1)A(Z) + (n− 1)B(Z) + n(n− 2)A(Z) + (n− 2)A(Z)] = 0

or,

(4.12) r[(n + 1)A(Z) + B(Z)] = 0.

Replacing Z by X we get

(4.13) r[(n + 1)A(X) + B(X)] = 0.

Now adding (4.9),(4.11) and (4.13) we get

r[(3n + 6)A(X) + (n + 2)B(X)] = 0

or,
r(n + 2)[3A(X) + B(X)] = 0.

Therefore , either r = 0 or 3A(X) + B(X) = 0. Hence we have the following:

Theorem 4.1. If an Einstein almost pseudo conharmonically symmetric manifold
(n > 2) is an almost pseudo symmetric manifold, then the scalar curvature of the
manifold vanishes, provided that 3A(X) + B(X) 6= 0.

Again , if in an Einstein almost pseudo conharmonically symmetric manifold r = 0,
then using (1.8) and (4.6) in (4.4) we get

(∇XŔ)(Y, Z, U, V ) = [A(X) + B(X)]Ŕ(Y, Z, U, V )
+A(Y )Ŕ(X,Z, U, V ) + A(Z)Ŕ(Y, X,U, V )
+A(U)Ŕ(Y, Z,X, V ) + A(V )Ŕ(Y, Z, U,X),

which is the defining condition of an almost pseudo symmetric manifold. Hence we
can state the following:

Theorem 4.2. If in an Einstein (APC̃S)n(n > 2) the scalar curvature vanishes,
then it is an almost pseudo symmetric manifold.
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Next we suppose that in an Einstein almost pseudo conharmonically symmetric
manifold the vector field ρ defined in (3.10) is parallel. Then we have

(4.14) ∇Xρ = 0 for all X.

Making use of Ricci identity we get

(4.15) Ŕ(X,Y, ρ, U) = 0,

from which it follows that

(4.16) S(Y, ρ) = 0.

From (4.16) and (3.10) we get
rg(Y, ρ) = 0.

This implies r = 0 if || ρ ||2 6= 0. Again , if r = 0 then from (4.4) using (1.8) and
(4.6) it follows that the manifold is an almost pseudo symmetric manifold. Thus
we can state the following:

Theorem 4.3. If the vector field defined by g(X, ρ) = A(X) − B(X) is a paral-
lel vector field in an Einstein almost pseudo conharmonically symmetric manifold
(n > 2) , then it is an almost pseudo symmetric manifold provided ‖ ρ ‖6= 0.

5. Ricci Symmetric (APC̃S)n

A Riemannian manifold is said to be Ricci symmetric if its Ricci tensor S of
type (0,2) satisfies the condition

(5.1) ∇S = 0

and

(5.2) dr = 0.

Then using (5.1) in (3.2) we get

(5.3) (∇XC̃)(Y, Z, U, V ) = (∇XŔ)(Y, Z, U, V ).

Hence

(∇XC̃)(Y, Z, U, V ) + (∇Y C̃)(Z, X,U, V ) + (∇ZC̃)(X, Y, U, V )
= (∇XŔ)(Y,Z, U, V ) + (∇Y Ŕ)(Z,X, U, V ) + (∇ZŔ)(X,Y, U, V ).(5.4)

Using (3.4) in (5.4) we get

(∇XC̃)(Y, Z, U, V ) + (∇Y C̃)(Z,X, U, V ) + (∇ZC̃)(X,Y, U, V ) = 0.
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Hence we have the following:

Theorem 5.1. In a Ricci symmetric almost pseudo conharmonically symmetric
manifold of dimension n(n > 2), the conharmonic curvature tensor satisfies the
Bianchi’s 2nd identity.

Now contracting (3.2) over X and V we get

(divC̃)(Y,Z)U =
(n− 3)
(n− 2)

[(∇Y S)(Z,U)− (∇ZS)(Y, U)]

− 1
2(n− 2)

[g(Z, U)dr(Y )− g(Y,U)dr(Z)].(5.5)

Again contracting (1.8) over X and V we get

(divC̃)(Y, Z)U = 2A(C̃(Y, Z)U) + B(C̃(Y, Z)U)

− r

(n− 2)
[A(Y )g(Z, U)−A(Z)g(Y, U)].(5.6)

Using (5.5) in (5.6) we get

2A(C̃(Y, Z)U) + B(C̃(Y, Z)U)

− r

(n− 2)
[A(Y )g(Z,U)−A(Z)g(Y, U)]

= (
n− 3
n− 2

)[(∇Y S)(Z, U)− (∇ZS)(Y, U)]

− 1
2(n− 2)

[g(Z, U)dr(Y )− g(Y, U)dr(Z)].(5.7)

Using (5.1) and (5.2) in (5.7) we get

2A(C̃(Y, Z)U) + B(C̃(Y,Z)U)

− r

(n− 2)
[A(Y )g(Z,U)−A(Z)g(Y,U)] = 0.(5.8)

Now contracting over Z, U we get

− 2r

(n− 2)
A(Y )− r

(n− 2)
B(Y )− r

(n− 2)
(n− 1)A(Y ) = 0.

or,
− r

(n− 2)
[(n + 1)A(Y ) + B(Y )] = 0.

Therefore, B(Y ) = −(n + 1)A(Y ), provided r 6= 0. Hence we have the following:

Theorem 5.2. In a Ricci symmetric n-dimensional (n > 2) almost pseudo con-
harmonically symmetric manifold , the vector fields corresponding to the 1-forms A
and B are in opposite direction.
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6. Examples of an (APC̃S)n

Example 6.1. Let (R4, g) be a 4-dimensional Riemannian manifold endowed with
the Riemannian metric g given by

(6.1) ds2 = gijdxidxj = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2],

where (i, j = 1, 2, 3, 4) and q = ex1

k2 and k is a non-zero constant.

Here the only non-vanishing components of the Christoffel symbols and the
curvature tensors are respectively :

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
q

1 + 2q
, Γ1

22 = Γ1
33 = Γ1

44 = − q

1 + 2q
,

R1221 = R1331 = R1441 =
q

1 + 2q
, R2332 = R2442 = R3443 =

q2

1 + 2q

and the components obtained by the symmetry propertes. The non-vanishing com-
ponents of the Ricci tensors are:

R11 =
3q

(1 + 2q)2
, R22 = R33 = R44 =

q

1 + 2q
,

and the non-vanishing conharmonic curvature tensors and their covariant derivatives
are:

C̃1221 = C̃1331 = C̃1441 = C̃2332 = C̃3443 = C̃2442 = −q(1 + q)
(1 + 2q)

,

C̃1221,1 = C̃1331,1 = C̃1441,1 = C̃2332,1 = C̃3443,1 = C̃2442,1 =
2q2(1 + q)
(1 + 2q)2

.

Let us choose the associated 1-forms Ai and Bi as follows:

(6.2) Ai(x) =
{

0 for i=1
q otherwise,

(6.3) Bi(x) =
{ − 2q

1+2q for i=1
−q otherwise,

at any point x ∈ R4.
Now the equation (1.8) reduces to the equations

(6.4) C̃1221,1 = [A1 + B1]C̃1221 + A1C̃1221 + A2C̃1121 + A2C̃1211 + A1C̃1221,
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(6.5) C̃1331,1 = [A1 + B1]C̃1331 + A1C̃1331 + A3C̃1131 + A3C̃1311 + A1C̃1331,

(6.6) C̃1441,1 = [A1 + B1]C̃1441 + A1C̃1441 + A4C̃1141 + A4C̃1411 + A1C̃1441,

(6.7) C̃2332,1 = [A1 + B1]C̃2332 + A2C̃1332 + A3C̃2132 + A3C̃2312 + A2C̃2331,

(6.8) C̃2442,1 = [A1 + B1]C̃2442 + A2C̃1442 + A4C̃2142 + A4C̃2412 + A2C̃2441,

(6.9) C̃3443,1 = [A1 + B1]C̃3443 + A3C̃1443 + A4C̃3143 + A4C̃3413 + A3C̃3441.

Using (6.2) and (6.3) we get from (6.4)

R.H.S. of (6.4) = [A1 + B1]C̃1221 + A1C̃1221 + A1C̃1221

= 3A1C̃1221 + B1C̃1221

= 3(0)(−q(1 + q)
(1 + 2q)

) + (− 2q

1 + 2q
)(−q(1 + q)

(1 + 2q)
)

=
2q2(1 + q)
(1 + 2q)2

= C̃1221,1

= L.H.S. of (6.4).

By similar argument it can be shown that (6.5), (6.6), (6.7), (6.8) and (6.9)
are all true. So, R4 is an (APC̃S)n which is neither conharmonically flat nor
conharmonically symmetric.

Example 6.2.

In a recent paper [11] De and Gazi proved a theorem as follows:
If Vn(n ≥ 4) be a Riemannian space with the metric of the form

(6.10) ds2 = φ(dx1)2 + Kαβdxαdxβ + 2dx1dxn,

where [Kαβ ] is a symmetric and non-singular matrix cosisting of constant and φ
is a function of x1, x2, ..., xn−1 and independent of xn. Here Kαβ considered as
Kronecker symbol δαβ and φ = (Mαβ + δαβ)xαxβe(x1)2 , and Mαβ are constant and
satisfy the relations

Mαβ = 0, for α 6= β

6= 0, for α = β

and

(6.11) Σn−1
α=2Mαα = 0,
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then Vn is an almost pseudo conformally symmetric space with zero scalar curvature
which is neither conformally flat nor conformally symmetric.
From this theorem we see that the scalar curvature r = 0.

Therefore , the conformal curvature tensor C reduces to conharmonic curvature
tensor C̃. Thus Vn is an almost pseudo conharmonically symmetric space.

Example 6.3. Let (R4, g) be a 4-dimensional Riemannian manifold endowed with
the Riemannian metric g given by

(6.12) ds2 = gijdxidxj = (x4)
4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2,

where (i, j = 1, 2, 3, 4) and x4 is non-zero and non-constant.

Then the only non-vanishing components of the Christoffel symbols, the curvature
tensors and the Ricci tensors are:

Γ4
11 = Γ4

22 = Γ4
33 = −2

3
(x4)

1
3 , Γ1

14 = Γ2
24 = Γ3

34 =
2

3x4
,

R1221 = R1331 = R2332 =
4
9
(x4)

2
3 , R1441 = R2442 = R3443 = − 2

9(x4)
2
3
,

R11 = R22 = R33 =
2

3(x4)
2
3
, R44 = − 2

3(x4)2
.

It can be easily shown that the scalar curvature r of the resulting manifold (R4, g)
is 4

3(x4)2 , which is non-vanishing and non-constant. The non-vanishing components
of conharmonic curvature tensors and their covariant derivatives are:

C̃1221 = C̃1331 = C̃2332 = −2
9
(x4)

2
3 , C̃1441 = C̃2442 = C̃3443 = −2

9
(x4)−

2
3 ,

C̃1221,4 = C̃1331,4 = C̃2332,4 = − 4
27(x4)

1
3
, C̃1441,4 = C̃2442,4 = C̃3443,4 =

4
27(x4)

5
3
.

Let us choose the associated 1-forms as follows:

(6.13) Ai(x) =




− 2

3x4 for i=4

0 otherwise,

(6.14) Bi(x) =
{

4
3x4 for i=4
0 otherwise,

at any point x ∈ R4. Now the equation (1.8) reduces to the equations

(6.15) C̃1221,4 = [A4 + B4]C̃1221 + A1C̃4221 + A2C̃1421 + A2C̃1241 + A1C̃1224.

(6.16) C̃1331,4 = [A4 + B4]C̃1331 + A1C̃4331 + A3C̃1431 + A3C̃1341 + A1C̃1334.
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(6.17) C̃2332,4 = [A4 + B4]C̃2332 + A2C̃4332 + A3C̃2432 + A3C̃2342 + A2C̃2334.

(6.18) C̃1441,4 = [A4 + B4]C̃1441 + A1C̃4441 + A4C̃1441 + A4C̃1441 + A1C̃1444.

(6.19) C̃2442,4 = [A4 + B4]C̃2442 + A2C̃4442 + A4C̃2442 + A4C̃2442 + A2C̃2444.

(6.20) C̃3443,4 = [A4 + B4]C̃3443 + A3C̃4443 + A4C̃3443 + A4C̃3443 + A3C̃3444.

Using (6.13) and (6.14) we get from (6.15)

R.H.S. of (6.15) = [A4 + B4]C̃1221

= [(− 2
3x4

) + (
4

3x4
)][−2

9
(x4)

2
3 ]

= [
2

3x4
][−2

9
(x4)

2
3 ]

= − 4
27

(x4)−
1
3

= L.H.S. of (6.15).

By similar arguement it can be shown that (6.16), (6.17), (6.18), (6.19) and (6.20)
are all true. So, R4 is an (APC̃S)n which is neither conharmonically flat nor conhar-
monically symmetric with non-zero and non-constant scalar curvature r = 4

3(x4)2 .
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[20] Prvanović, M., On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen,
46(1995), 19-25.
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