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Abstract. In this paper, we prove that there are no pseudo null Bertrand curve with

curvature functions k1(s) = 1, k2(s) ̸= 0 and k3(s) other than itself in Minkowski space-

time E4
1 and by using the similar idea of Matsuda and Yorozu [13], we define a new

kind of Bertrand curve and called it pseudo null (1, 3)-Bertrand curve. Also we give some

characterizations and an example of pseudo null (1, 3)-Bertrand curves in Minkowski space-

time.

1. Introduction

Many work has been studied about the general theory of curves in an Euclidean
space (or more generally in a Riemannian manifold). So now, we have extensive
knowledge on its local geometry as well as its global geometry. Characterization of
a regular curve is one of the important and interesting problems in the theory of
curves in Euclidean space. There are two ways widely used to solve these problems:
to figure out the relationship between the Frenet vectors of the curves (see [11]),
and to determine the shape and size of a regular curve by using its curvatures.
k1 (or κ) and k2 (or τ), the curvature functions of a regular curve, have an effective
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role. For example: if k1 = 0 = k2, the curve is a geodesic or if k1 =constant̸= 0
and k2 = 0, the curve is a circle with radius (1/k1), etc..This paper deals with the
characterization of Bertrand curve which is one of the samples of regular curves.

In 1845, Saint Venant (see [17]) proposed the question whether the principal
normal of a curve is the principal normal of another’s on the surface generated
by the principal normal of the given one. Bertrand answered this question in [3]
published in 1850. He proved that a necessary and sufficient condition for the
existence of such a second curve is required in fact a linear relationship calculated
with constant coefficients should exist between the first and second curvatures of
the given original curve. In other words, if we denote first and second curvatures of
a given curve by k1and k2 respectively, we have λk1+µk2 = 1, λ, µ ∈ R. Since 1850,
after the paper of Bertrand, the pairs of curves like this have been called Conjugate
Bertrand Curves, or more commonly Bertrand Curves (see [11]).

There are many important papers on Bertrand curves in Euclidean space (see:
[4],[6],[15]).

When we investigate the properties of Bertrand curves in Euclidean n-space,
it is easy to see that either k2 or k3 is zero which means that Bertrand curves in
En (n > 3) are degenerate curves (see [15]). This result is restated by Matsuda
and Yorozu [13]. They proved that there was not any special Bertrand curves in
En (n > 3) and defined a new kind, which is called (1, 3)-type Bertrand curves in
4-dimensional Euclidean space. Bertrand curves and their characterizations were
studied by many researchers in Minkowski 3-space and Minkowski space-time (see
[1],[2],[7],[9],[10],[18]) as well as in Euclidean space.

In this paper, we prove that there is no any pseudo null Bertrand curve with
nonzero curvature function (k2(s)) other than itself in Minkowski space-time E4

1 and
define a new kind of Bertrand curves in E4

1 calling it as pseudo null (1, 3)-Bertrand
curve. It also gives some characterizations and an example of pseudo null (1, 3)-
Bertrand curves in Minkowski space-time E4

1 .

2. Preliminaries

The Minkowski space-time E4
1 is the real vector space R4 equipped with indefi-

nite flat metric given by

g = −dx21 +
4∑

i=2

dx2i ,

where (x1, x2, x3, x4) is a rectangular coordinate system of R4. Recall that a vector
v ∈ E4

1\{0} can be spacelike if g(v, v) > 0 , timelike if g(v, v) < 0 and null (lightlike)
if g(v, v) = 0. In particular, the vector v = 0 is a spacelike . The norm of a vector v
is given by ||v||L =

√
|g(v, v)|, and two vectors v and w are said to be orthogonal,

if g(v, w) = 0. An arbitrary curve α(s) in E4
1 , can locally be spacelike, timelike or

null (lightlike), if all its velocity vectors α′(s) are respectively spacelike, timelike or
null. A spacelike or a timelike curve α(s) has unit speed, if g(α′(s), α′(s)) = ±1
([14]). We assume that each null curve α in this paper is parametrized by a special
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parameter p such that g(α′′(p), α′′(p)) = 1, which called the distinguished parameter
of α.

In a semi-Euclidean space, some normal vectors of a regular curve may be
null vectors. In Minkowski space-time, such curves are necessarily spacelike. If its
principal normal is null , such curves are called pseudo null curves, if its second
normal is null, the curve is called a partially null curve. Curves with null normals
have at most two curvatures. These curves were defined and studied by W. B.
Bonnor in [5] (see also [16]).

Let {T,N1, N2, N3} be the moving Frenet frame along a pseudo null curve α in
E4
1 . If α is a pseudo null curve , the Frenet equations are given by ([5]):

(2.1)

T ′ = k1N1,
N ′

1 = k2N2

N ′
2 = k3N1 − k2N3,

N ′
3 = − k1T − k3N2

where the first curvature k1 (s) = 0, if α is a straight line, or k1 (s) = 1 in all other
cases. Such curve has two curvatures k2 (s) and k3 (s) .Moreover, the Frenet vectors
of a pseudo null curve α satisfy the following conditions:

(2.2)
g (T, T ) = g (N2, N2) = g (N1, N3) = 1,

g (N1, N1) = g (N3, N3) = 0
g (T,N1) = g (T,N2) = g (T,N3) = g (N1, N2) = g (N2, N3) = 0.

In this study we consider that the curve α is not a straight line, that is, the first
curvature of α, k1 (s) = 1.

3. On Pseudo Null Bertrand Curves in Minkowski Space-time

In this section, by the following theorem, we prove that there is no any pseudo
null Bertrand curves with curvature functions k1(s) = 1, k2(s) ̸= 0 and k3(s) in
Minkowski space-time E4

1 other than itself.

Theorem 3.1. Let α : I ⊂ R → E4
1 be a pseudo null curve with curvature functions

k1(s) = 1, k2(s) ̸= 0 and k3(s). Then, there is no any Bertrand mate of α in
Minkowski space-time E4

1 other than itself.

Proof. Let α : I ⊂ R → E4
1 be a pseudo null Bertrand curve in E4

1 and β : I ⊂ R →
E4
1 be a pseudo null Bertrand mate of α. We assume that β is different from α.

Let the pairs of α(s) and β(s) = β(φ(s)) (where φ : I → I, s = φ(s) is a regular
C∞−function) be corresponding points of α and β. Then we can write,

(3.1) β (s) = β (φ (s)) = α (s) + λ (s)N1 (s)

where λ is a C∞-function on I. Differentiating Eq. (3.1) with respect to s and by
using Frenet formulas given in Eq. (2.1), we get

(3.2) φp (s)T (φ (s)) = T (s) + λp (s)N1 (s) + λ (s) k2 (s)N2 (s) .
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and differentiating Eq. (3.2) with respect to s, we have

φpp (s)T (φ (s)) +
(
φp (s)

)2
k1 (φ (s))N1 (φ (s))

=
{
k1 (s) + λpp (s) + λ (s) k2 (s) k3 (s)

}
N1 (s) +

{
2λp (s) k2 (s) + λ (s) kp2 (s)

}
N2 (s)

+
{
−λ (s) k22 (s)

}
N3 (s)

If we take the inner product with N1 (φ (s)) on both sides of the last equation, we
have

g(φpp (s)T (φ (s)) , N1 (φ (s))) + g
(
φp (s)

)2
k1 (φ (s))N1 (φ (s)) , N1 (φ (s))

= g
({
k1 (s) + λpp (s) + λ (s) k2 (s) k3 (s)

}
N1 (s) , N1 (φ (s))

)
+ g

({
2λp (s) k2 (s) + λ (s) kp2 (s)

}
N2 (s) , N1 (φ (s))

)
− g

(
λ (s) k22 (s)N3 (s) , N1 (φ (s))

)
or if we consider that N1 (φ (s)) is parallel to N1 (s), that is, N1 (φ (s)) =

cN1 (s) where c ∈ R− {0} then the above equality

g(φpp (s)T (φ (s)) , N1 (φ (s))) + g
(
φp (s)

)2
k1 (φ (s))N1 (φ (s)) , N1 (φ (s))

= g
({
k1 (s) + λpp (s) + λ (s) k2 (s) k3 (s)

}
N1 (s) , cN1 (s)

)
+ g

({
2λp (s) k2 (s) + λ (s) kp2 (s)

}
N2 (s) , cN1 (s)

)
− g

(
λ (s) k22 (s)N3 (s) , cN1 (s)

)
holds. By using Frenet formulas for α and β given in Eq. (2.1), we get

cλ (s) k22 (s) = 0

for all s ∈ I. Thus, since c ∈ R − {0} and k2 (s) ̸= 0, we get λ (s) = 0. In this
case, we can rewrite Eq.(3.1) as follows

(3.3) β (s) = β (φ (s)) = α (s) ,

Thus, there is no any Bertrand mate of α in Minkowski space-time E4
1 other

than itself.
2

As a result of Theorem 3.1, we give the following corollary without proof.

Corollary 3.2. A pseudo null curve α with the curvature function k1(s) is a
pseudo-null Bertrand curve if and only if α is a degenerate plane curve.

4. On Pseudo Null (1, 3)-Bertrand Curves in Minkowski Space-time

In this section, firstly we will define pseudo null (1, 3)- Bertrand curves with
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curvatures k1(s) = 1, k2(s) ̸= 0, k3(s) in Minkowski space-time E4
1 and some char-

acterizations of the curves will given.

Definition 4.1. Let α : I ⊂ R → E4
1 and β : I ⊂ R → E4

1 be pseudo null curves
with curvatures k1(s) = 1, k2(s) ̸= 0, k3(s) and k1(φ(s)), k2(φ(s)), k3(φ(s)), re-
spectively, where φ : I → I, s = φ(s) is a regular C∞−function such that each point
α(s) of α corresponds to the point β(s) = β(φ(s)) of β for all s ∈ I. If the Frenet
(1, 3)-normal plane at each point α(s) of α coincides with the Frenet (1, 3)-normal
plane at corresponding point β(s) = β(φ(s)) of β for all s ∈ I, α is called a pseudo
null (1, 3)-Bertrand curve in E4

1 and β is called a pseudo null (1, 3)-Bertrand mate
of α.

Theorem 4.2. Let α : I ⊂ R → E4
1 be a pseudo null curve with curvature functions

k1(s) = 1, k2(s) ̸= 0 and k3(s). Then, α is a pseudo null (1, 3)-Bertrand curve if
and only if there exist constant real numbers λ, µ, γ, satisfying the followings:

(4.1-a) λk2(s)− µk3(s) ̸= 0, λ ̸= 0, µ ̸= 0

(4.1-b) γ [λk2(s)− µk3(s)] + µ = 1,

(4.1-c) γ + k3(s) = 0

(4.1-d) µ ̸= 1,

for all s ∈ I.

Proof. We assume that α is a pseudo null (1, 3)-Bertrand curve parametrized by
arclenght s. The pseudo null (1, 3)-Bertrand mate β is given by arc-lenght s. Then,
we can write

(4.2) β (s) = β (φ (s)) = α(s) + λ(s)N1(s) + µ(s)N3(s)

for all s ∈ I, where λ(s) and µ(s) are C∞−functions on I. Differentiating Eq. (4.2)
with respect to s, and by using the Frenet equations given in Eq. (2.1), we have

(4.3)
T (φ (s))φp (s) = [1− µ(s)]T (s) + λp(s)N1(s)

+ [λ(s)k2(s)− µ(s)k3(s)]N2(s) + µp(s)N3(s)

for all s ∈ I.
Since the plane spanned by N1(s) and N3(s) coincides with the plane spanned

by N1(φ (s)) and N3(φ (s)), we can write

(4.4) N1(φ (s)) = a (s)N1(s) + b (s)N3(s),
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(4.5) N3(φ (s)) = c (s)N1(s) + d(s)N3(s)

and by using Eq. (4.4) and Eq. (4.5) we can easily see that

λp(s) = 0, µp(s) = 0,

that is, λ and µ are constant functions on I.
So, we can rewrite Eq. (4.2) and Eq. (4.3) for all s ∈ I, respectively as follows

(4.6) β (s) = β (φ (s)) = α(s) + λN1(s) + µN3(s)

and

(4.7) T (φ (s))φp (s) = [1− µ]T (s) + [λk2(s)− µk3(s)]N2(s).

Here notice that

(4.8)
(
φp (s)

)2
= [1− µ]

2
+ [λk2(s)− µk3(s)]

2 ̸= 0

for all s ∈ I. If we consider

(4.9) u(s) =

[
1− µ

φp (s)

]
, v(s) =

[
λk2(s)− µk3(s)

φp (s)

]
,

it is easy to obtain

(4.10) T (φ (s)) = u(s)T (s) + v(s)N2(s)

where u(s) and v(s) are C∞-functions on I. Differentiating Eq. (4.10) with respect
to s and using the Frenet equations, we obtain

(4.11)
N1 (φ (s))φp (s) = up(s)T (s) + [u(s) + v(s)k3(s)]N1(s)

+vp(s)N2(s)− v(s)k2(s)N3(s).

Since N1 (φ (s)) is expressed by linear combination of N1(s) and N3(s),

up(s) = 0, vp(s) = 0,

that is, u and v are constant functions on I. So, we can rewrite Eq. (4.11) as follows

(4.12) N1 (φ (s))φp (s) = [u+ vk3(s)]N1(s)− vk2(s)N3(s).

By using Eq. (4.9), we can show that

(4.13) v (1− µ) = u (λk2(s)− µk3(s)) ,

where v must be non-zero. If we take v = 0 in the Eq. (4.12), we get

N1 (φ (s))φp (s) = uN1(s)
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thus we obtain N1 (φ (s)) = ±N1 (s) for all s ∈ I. This is a contradiction according
to the Theorem (3.1) . Thus we must consider only the case of v ̸= 0, and then it
is easy to see that

(4.14) λk2(s)− µk3(s) ̸= 0

for all s ∈ I. Morever, from the Theorem (3.1) we can easily see that λ ̸= 0 and
µ ̸= 0. Thus, we obtain relation (4.1-a).

If the constant γ is taken as γ =
u

v
and by using Eq. (4.13) we have

γ (λk2(s)− µk3(s)) + µ = 1

for all s ∈ I. Thus we obtained relation (4.1-b).
From Eq. (4.12) we have

g(N1 (φ (s))φp (s) , N1 (φ (s))φp (s)) = −2 [u+ vk3(s)] vk2(s)

and then

(4.15) 0 = −2 [u+ vk3(s)] vk2(s)

for all s ∈ I. Since k2(s) ̸= 0 and v ̸= 0, we get

u+ vk3(s) = 0.

By using Eq. (4.9), we have(
1− µ

φp (s)

)
+

(
λk2(s)− µk3(s)

φp (s)

)
k3(s) = 0

γ (λk2(s)− µk3(s)) + (λk2(s)− µk3(s)) k3(s) = 0

(λk2(s)− µk3(s)) (γ + k3(s)) = 0.

From Eq. (4.14), it is easy to see that

(γ + k3(s)) = 0,

for all s ∈ I. Thus, we obtain relation (4.1-c).
From Eq. (4.1-b) and Eq. (4.8), we get

(4.16)
(
φp (s)

)2
= (λk2(s)− µk3(s))

2 [
γ2 + 1

]
.

From Eq. (4.9) and Eq. (4.12), we have

(4.17) N1 (φ (s)) =
(λk2(s)− µk3(s))

(φp (s))
2 [(γ + k3(s))N1(s)− k2(s)N3(s)] ,
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N1 (φ (s)) = − (λk2(s)− µk3(s))

(φp (s))
2 k2(s)N3(s),

N1 (φ (s)) = − k2(s)

φp (s)
vN3(s).

Differentiating Eq. (4.17) with respect to s and by using the Frenet equations, we
obtain
(4.18)

k2(φ(s))N2(φ(s))φ
p (s) =

(
− k2(s)

φp (s)

)p

vN3(s) +
k2(s)

φp (s)
v (T (s) + k3(s)N2 (s)) .

Since N2(φ(s)) ∈ Sp {T (s), N2 (s)}, we obtain(
− k2(s)

φp (s)

)p

= 0

that is, k2(s)
φp(s) is a non-zero constant.So, we can rewrite Eq. (4.18) as follows

k2(φ(s))N2(φ(s))φ
p (s) =

k2(s)

φp (s)
v (T (s) + k3(s)N2 (s)) .

If we denote

(4.19) A(s) = γ
(
γ2 + 1

)−1
(1− µ)

−1
k2(s)

and

(4.20) B(s) = γ
(
γ2 + 1

)−1
(1− µ)

−1
k2(s)k3(s).

We obtain
k2(φ(s))N2(φ(s))φ

p (s) = A(s)T (s) +B(s)N2 (s) .

Since φp (s) k2 (φ (s))N2 (φ (s)) ̸= 0 for ∀s ∈ I , we have

µ ̸= 1

for all s ∈ I. Thus, we obtain relation (4.1-d).
Conversely, we assume that α : I ⊂ R → E4

1 be a pseudo null curve with
curvature functions k1(s) = 1, k2(s) ̸= 0, k3(s) satisfying the relation (4.1− a) ,
(4.1− b) , (4.1− c) and (4.1− d) for constant numbers λ, δ, γ and we define a
pseudo null curve β : I ⊂ R → E4

1 such as

(4.21) β(s) = α (s) + λN1(s) + µN3(s)

for all s ∈ I. Differentiating Eq. (4.21) with respect to s and by using the Frenet
equations, we have

dβ (s)

ds
= (1− µ)T (s) + (λk2(s)− µk3(s))N2(s),
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thus, by using the Eq. (4.1-b), we obtain

dβ (s)

ds
= (λk2(s)− µk3(s))(γT (s) +N2(s))

for all s ∈ I. Also, we get

(4.22)

∥∥∥∥dβ (s)ds

∥∥∥∥
L

= ξ (λk2(s)− µk3(s))
√
(γ2 + 1)

Then we can write

s = φ(s) =

s∫
0

∥∥∥∥dβ (t)dt

∥∥∥∥
L

dt (∀s ∈ I)

where φ : I → I is a regular C∞−function, and we obtain

φp (s) = ξ (λk2(s)− µk3(s))
√

(γ2 + 1),

for all s ∈ I. Differentiating Eq. (4.21) with respect to s, we get

φp (s)
dβ (s)

ds

∣∣∣∣
s=φ(s)

= (λk2(s)− µk3(s)) {γT (s) +N2(s)}

or

(4.23) T (φ(s)) = ξ
(
γ2 + 1

)− 1
2 (γT (s) +N2(s))

for all s ∈ I. Differentiating Eq. (4.23) with respect to s, we have

φp (s)T
p
(φ(s)) = −ξ

(
γ2 + 1

)− 1
2 k2 (s)N3 (s) .

and by using the Frenet equations,

(4.24) N1(φ(s)) =
γk2 (s)

(γ2 + 1) (1− µ)
N3 (s) .

Differentiating Eq. (4.23) with respect to s,

k2(φ(s))N2(φ(s))φ
p (s) =

γ

γ2 + 1
(1− µ)

−1
k2 (s) (T (s) + k3 (s)N2 (s))

and

g
(
k2(φ(s))N2(φ(s))φ

p (s) , k2(φ(s))N2(φ(s))φ
p (s)

)
= k

2

2(φ(s))φ
p (s)

2

k
2

2(φ(s))φ
p (s)

2
=

γ

γ2 + 1
(1− µ)

−1
k2 (s)

(
1 + k23 (s)

)
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k2(φ(s)) =

(
γ

1− µ

) 3
2
√
k2 (s) (1 + k23 (s))

γ2 + 1
.

Since N3 (φ (s)) is expressed by linear combination of N1(s) and N3(s), we get

(4.25) N3(φ(s)) = m(s)N1 (s) + n(s)N3 (s)

and
g
(
N3(φ(s)), N1(φ(s))

)
= 1.

Besides we can show that

m(s)
γk2 (s)

(γ2 + 1) (1− µ)
= 1,

m(s) =

(
γ2 + 1

)
(1− µ)

γk2 (s)
.

Since
g
(
N3(φ(s)), N3(φ(s))

)
= 0,

we can show that
2m(s)n(s) = 0,

n(s) ̸= 0.

So, we can rewrite Eq. (4.25) as follows

(4.26) N3(φ(s)) =

(
γ2 + 1

)
(1− µ)

γk2 (s)
N1 (s) .

Then from the Frenet equations for the curve β and the above equalities, we
have

(4.27) N
p
3(φ(s)) = −T (φ(s))− k3(φ(s))N2(φ(s)).

Differentiating Eq. (4.26) with respect to s, and by using the Frenet equations,

(4.28) N
p
3(φ(s)) = ξ

√
(γ2 + 1)

((
1

k2 (s)

)p

N1 (s) +N2 (s)

)
.

So, by using Eq. (4.27) and Eq. (4.28)

k3(φ(s)) = ξk3(s)

is obtained. Notice that

g
(
T , T

)
= g

(
N2, N2

)
= g

(
N1, N3

)
= 1, g

(
N1, N1

)
= g

(
N3, N3

)
= 0
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and

g
(
T ,N1

)
= g

(
T ,N2

)
= g

(
T ,N3

)
= g

(
N1, N2

)
= g

(
N2, N3

)
= 0,

for all s ∈ I where
{
T ,N1, N2, N3

}
is moving Frenet frame along pseudo null curve

β in E4
1 . And it is trivial that the Frenet (1, 3)-normal plane at each point α (s) of

α coincides with the Frenet (1, 3)-normal plane at corresponding point β (s) of β.
Hence α is a pseudo null (1, 3)- Bertrand curve in E4

1. This completes the proof.

Corollary 4.3. Let α : I ⊂ R → E4
1 be a pseudo null (1, 3)-Bertrand curve with

curvatures functions k1(s) = 1, k2(s) ̸= 0, k3(s) and β be a pseudo null (1, 3)-
Bertrand mate of α with curvatures functions k1(φ(s)), k2(φ(s)), k3(φ(s)). Then
the relations between these curvatures functions are

k1(φ(s)) = 1,

k2(φ(s)) =
(

γ
1−µ

) 3
2

√
k2(s)(1+k2

3(s))
γ2+1 ,

k3(φ(s)) = ξk3(s),

where

ξ =

{
1 , λk2(s)− µk3(s) > 0
−1 , λk2(s)− µk3(s) < 0

.

Proof. It is obvious using the similar method in the proof of above theorem.

Corollary 4.4. Let α : I ⊂ R → E4
1 be a pseudo null (1, 3)-Bertrand curve with

curvatures functions k1(s) = 1, k2(s) ̸= 0, k3(s) and β be a pseudo null (1, 3)-
Bertrand mate of the curve α and φ : I → I, s = φ(s) is a regular C∞−function
such that each point α(s) of the curve α corresponds to the point β(s) = β(φ(s))
of the curve β for all s ∈ I. Then the distance between the points α(s) and β (s) is
constant for all s ∈ I.

Proof. Let α : I ⊂ R → E4
1 be a pseudo null (1, 3)-Bertrand curve with curvatures

functions k1(s) = 1, k2(s) ̸= 0 and k3(s) and β be a pseudo null (1, 3)-Bertrand
mate of the curve α. We assume that β is different from α. Let the pairs of α(s)
and β(s) = β(φ(s)) (where φ : I → I, s = φ(s) is a regular C∞−function) be of
corresponding points of α and β. Then we can write,

β (s) = β (φ (s)) = α(s) + λN1(s) + µN3(s)

where λ and µ are non-zero constants. Thus,

β (s)− α(s) = λN1(s) + µN3(s)

and
∥β (s)− α(s)∥ =

√
2λµ.
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So, d (α (s) , β (s)) =constant, which completes the proof.

Example: (The pseudo null curve equation given in [8]) Let us consider a pseudo
null curve with the equation

α(s) =
3√
10

(
1

9
cosh (3s) ,

1

9
sinh (3s) , sin (s) ,− cos (s)

)
.

The Frenet Frame of α is given by

T (s) =
3√
10

(
1

3
sinh(3s),

1

3
cosh(3s), cos(s), sin(s)),

N1 (s) =
3√
10

(cosh (3s) , sinh (3s) ,− sin (s) , cos (s)) ,

N2 (s) =
1√
10

(3 sinh (3s) , 3 cosh (3s) ,− cos (s) ,− sin (s)) ,

N3 (s) =
5

3
√
10

(− cosh (3s) ,− sinh (3s) ,− sin (s) , cos (s)) .

The curvatures of α are

k1 (s) = 1, k2 (s) = 3, k3 (s) =
4

3
.

We take constant λ, µ, and γ defined by

λ = −17

18
, µ = −1, γ = −4

3

Then, it is obvious that Eq. (4.1-a), Eq. (4.1-b), Eq. (4.1-c) and Eq. (4.1-d) are
hold. Therefore, the curve α is a pseudo-null (1, 3)-Bertrand curve in E4

1. In this
case, by using Eq. (4.2) the pseudo-null (1, 3)-Bertrand mate of the curve α is given
as follows:

β(s) =
−5

6
√
10

(cosh (3s) , sinh (3s) ,−9 sin (s) , 9 cos (s)) .
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