KYUNGPOOK Math. J. 54(2014), 685-697 http://dx.doi.org/10.5666/KMJ.2014.54.4.685

On Pseudo Null Bertrand Curves in Minkowski Space-time

İSMAIL GÖK* Department of Mathematics, Faculty of Science, Ankara University, 06100, Ankara, Turkey e-mail: igok@science.ankara.edu.tr

SEMRA KAYA NURKAN Department of Mathematics, Faculty of Science and Arts, Usak University, 64200, Usak, Turkey e-mail: semrakaya_gs@yahoo.com

KAZIM İLARSLAN Department of Mathematics, Faculty of Sciences and Arts, Kırıkkale University, 71450, Kırıkkale, Turkey e-mail: kilarslan@yahoo.com

ABSTRACT. In this paper, we prove that there are no pseudo null Bertrand curve with curvature functions $k_1(s) = 1$, $k_2(s) \neq 0$ and $k_3(s)$ other than itself in Minkowski spacetime \mathbb{E}_1^4 and by using the similar idea of *Matsuda and Yorozu* [13], we define a new kind of Bertrand curve and called it pseudo null (1, 3)-Bertrand curve. Also we give some characterizations and an example of pseudo null (1, 3)-Bertrand curves in Minkowski space-time.

1. Introduction

Many work has been studied about the general theory of curves in an Euclidean space (or more generally in a Riemannian manifold). So now, we have extensive knowledge on its local geometry as well as its global geometry. Characterization of a regular curve is one of the important and interesting problems in the theory of curves in Euclidean space. There are two ways widely used to solve these problems: to figure out the relationship between the Frenet vectors of the curves (see [11]), and to determine the shape and size of a regular curve by using its curvatures. k_1 (or \varkappa) and k_2 (or τ), the curvature functions of a regular curve, have an effective

^{*} Corresponding Author.

Received September 18, 2012; revised January 10, 2013; accepted June 28, 2013.

²⁰¹⁰ Mathematics Subject Classification: 53C40, 53C50.

Key words and phrases: Minkowski space-time, pseudo null curve, Frenet vectors, (1,3)-Bertrand curve.

role. For example: if $k_1 = 0 = k_2$, the curve is a geodesic or if $k_1 = \text{constant} \neq 0$ and $k_2 = 0$, the curve is a circle with radius $(1/k_1)$, etc.. This paper deals with the characterization of Bertrand curve which is one of the samples of regular curves.

In 1845, Saint Venant (see [17]) proposed the question whether the principal normal of a curve is the principal normal of another's on the surface generated by the principal normal of the given one. Bertrand answered this question in [3] published in 1850. He proved that a necessary and sufficient condition for the existence of such a second curve is required in fact a linear relationship calculated with constant coefficients should exist between the first and second curvatures of the given original curve. In other words, if we denote first and second curvatures of a given curve by k_1 and k_2 respectively, we have $\lambda k_1 + \mu k_2 = 1$, $\lambda, \mu \in \mathbb{R}$. Since 1850, after the paper of Bertrand, the pairs of curves like this have been called *Conjugate Bertrand Curves*, or more commonly *Bertrand Curves* (see [11]).

There are many important papers on Bertrand curves in Euclidean space (see: [4], [6], [15]).

When we investigate the properties of Bertrand curves in Euclidean *n*-space, it is easy to see that either k_2 or k_3 is zero which means that Bertrand curves in \mathbb{E}^n (n > 3) are degenerate curves (see [15]). This result is restated by *Matsuda* and Yorozu [13]. They proved that there was not any special Bertrand curves in \mathbb{E}^n (n > 3) and defined a new kind, which is called (1, 3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3-space and Minkowski space-time (see [1], [2], [7], [9], [10], [18]) as well as in Euclidean space.

In this paper, we prove that there is no any pseudo null Bertrand curve with nonzero curvature function $(k_2(s))$ other than itself in Minkowski space-time \mathbb{E}_1^4 and define a new kind of Bertrand curves in \mathbb{E}_1^4 calling it as pseudo null (1,3)-Bertrand curve. It also gives some characterizations and an example of pseudo null (1,3)-Bertrand curves in Minkowski space-time \mathbb{E}_1^4 .

2. Preliminaries

The Minkowski space-time \mathbb{E}_1^4 is the real vector space \mathbb{R}^4 equipped with indefinite flat metric given by

$$g = -dx_1^2 + \sum_{i=2}^4 dx_i^2,$$

where (x_1, x_2, x_3, x_4) is a rectangular coordinate system of \mathbb{R}^4 . Recall that a vector $v \in \mathbb{E}_1^4 \setminus \{0\}$ can be *spacelike* if g(v, v) > 0, *timelike* if g(v, v) < 0 and *null (lightlike)* if g(v, v) = 0. In particular, the vector v = 0 is a spacelike. The norm of a vector v is given by $||v||_L = \sqrt{|g(v, v)|}$, and two vectors v and w are said to be orthogonal, if g(v, w) = 0. An arbitrary curve $\alpha(s)$ in \mathbb{E}_1^4 , can locally be *spacelike*, *timelike* or *null (lightlike)*, if all its velocity vectors $\alpha'(s)$ are respectively spacelike, timelike or null. A spacelike or a timelike curve $\alpha(s)$ has unit speed, if $g(\alpha'(s), \alpha'(s)) = \pm 1$ ([14]). We assume that each null curve α in this paper is parametrized by a special

parameter p such that $g(\alpha''(p), \alpha''(p)) = 1$, which called the *distinguished parameter* of α .

In a semi-Euclidean space, some normal vectors of a regular curve may be null vectors. In Minkowski space-time, such curves are necessarily spacelike. If its principal normal is null, such curves are called *pseudo null curves*, if its second normal is null, the curve is called a *partially null* curve. Curves with null normals have at most two curvatures. These curves were defined and studied by W. B. Bonnor in [5] (see also [16]).

Let $\{T, N_1, N_2, N_3\}$ be the moving Frenet frame along a pseudo null curve α in \mathbb{E}_1^4 . If α is a pseudo null curve, the Frenet equations are given by ([5]):

(2.1)
$$\begin{aligned}
T' &= k_1 N_1, \\
N'_1 &= k_2 N_2 \\
N'_2 &= k_3 N_1 - k_2 N_3, \\
N'_3 &= -k_1 T - k_3 N_2
\end{aligned}$$

where the first curvature $k_1(s) = 0$, if α is a straight line, or $k_1(s) = 1$ in all other cases. Such curve has two curvatures $k_2(s)$ and $k_3(s)$. Moreover, the Frenet vectors of a pseudo null curve α satisfy the following conditions:

(2.2)
$$g(T,T) = g(N_2, N_2) = g(N_1, N_3) = 1, g(N_1, N_1) = g(N_3, N_3) = 0 g(T, N_1) = g(T, N_2) = g(T, N_3) = g(N_1, N_2) = g(N_2, N_3) = 0.$$

In this study we consider that the curve α is not a straight line, that is, the first curvature of α , $k_1(s) = 1$.

3. On Pseudo Null Bertrand Curves in Minkowski Space-time

In this section, by the following theorem, we prove that there is no any pseudo null Bertrand curves with curvature functions $k_1(s) = 1$, $k_2(s) \neq 0$ and $k_3(s)$ in Minkowski space-time \mathbb{E}_1^4 other than itself.

Theorem 3.1. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null curve with curvature functions $k_1(s) = 1, k_2(s) \neq 0$ and $k_3(s)$. Then, there is no any Bertrand mate of α in Minkowski space-time \mathbb{E}_1^4 other than itself.

Proof. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null Bertrand curve in \mathbb{E}_1^4 and $\beta : \overline{I} \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null Bertrand mate of α . We assume that β is different from α . Let the pairs of $\alpha(s)$ and $\beta(\overline{s}) = \beta(\varphi(s))$ (where $\varphi : I \to \overline{I}, \overline{s} = \varphi(s)$ is a regular C^{∞} -function) be corresponding points of α and β . Then we can write,

(3.1)
$$\beta(\overline{s}) = \beta(\varphi(s)) = \alpha(s) + \lambda(s) N_1(s)$$

where λ is a C^{∞} -function on *I*. Differentiating Eq. (3.1) with respect to *s* and by using Frenet formulas given in Eq. (2.1), we get

(3.2)
$$\varphi'(s)\overline{T}(\varphi(s)) = T(s) + \lambda'(s)N_1(s) + \lambda(s)k_2(s)N_2(s).$$

and differentiating Eq. (3.2) with respect to s, we have

$$\varphi^{\prime\prime}(s)\overline{T}(\varphi(s)) + (\varphi^{\prime}(s))^{2}\overline{k}_{1}(\varphi(s))\overline{N}_{1}(\varphi(s))$$

$$= \left\{k_{1}(s) + \lambda^{\prime\prime}(s) + \lambda(s)k_{2}(s)k_{3}(s)\right\}N_{1}(s) + \left\{2\lambda^{\prime}(s)k_{2}(s) + \lambda(s)k_{2}^{\prime}(s)\right\}N_{2}(s)$$

$$+ \left\{-\lambda(s)k_{2}^{2}(s)\right\}N_{3}(s)$$

If we take the inner product with $\overline{N}_{1}\left(\varphi\left(s\right)\right)$ on both sides of the last equation, we have

$$\begin{split} g(\varphi^{\shortparallel}\left(s\right)\overline{T}\left(\varphi\left(s\right)\right),\overline{N}_{1}\left(\varphi\left(s\right)\right)\right) + g\left(\varphi^{\shortparallel}\left(s\right)\right)^{2}\overline{k}_{1}\left(\varphi\left(s\right)\right)\overline{N}_{1}\left(\varphi\left(s\right)\right),\overline{N}_{1}\left(\varphi\left(s\right)\right)\\ &= g\left(\left\{k_{1}\left(s\right) + \lambda^{\shortparallel}\left(s\right) + \lambda\left(s\right)k_{2}\left(s\right)k_{3}\left(s\right)\right\}N_{1}\left(s\right),\overline{N}_{1}\left(\varphi\left(s\right)\right)\right)\\ &+ g\left(\left\{2\lambda^{\shortparallel}\left(s\right)k_{2}\left(s\right) + \lambda\left(s\right)k_{2}^{\shortparallel}\left(s\right)\right\}N_{2}\left(s\right),\ \overline{N}_{1}\left(\varphi\left(s\right)\right)\right)\\ &- g\left(\lambda\left(s\right)k_{2}^{2}\left(s\right)N_{3}\left(s\right),\overline{N}_{1}\left(\varphi\left(s\right)\right)\right)\right)\end{split}$$

or if we consider that $\overline{N}_1(\varphi(s))$ is parallel to $N_1(s)$, that is, $\overline{N}_1(\varphi(s)) = cN_1(s)$ where $c \in \mathbb{R} - \{0\}$ then the above equality

$$g(\varphi^{\shortparallel}(s)\overline{T}(\varphi(s)), \overline{N}_{1}(\varphi(s))) + g(\varphi^{\shortparallel}(s))^{2}\overline{k}_{1}(\varphi(s))\overline{N}_{1}(\varphi(s)), \overline{N}_{1}(\varphi(s)))$$

$$= g\left(\left\{k_{1}(s) + \lambda^{\shortparallel}(s) + \lambda(s)k_{2}(s)k_{3}(s)\right\}N_{1}(s), cN_{1}(s)\right)$$

$$+ g\left(\left\{2\lambda^{\shortparallel}(s)k_{2}(s) + \lambda(s)k_{2}^{\shortparallel}(s)\right\}N_{2}(s), cN_{1}(s)\right)$$

$$- g\left(\lambda(s)k_{2}^{2}(s)N_{3}(s), cN_{1}(s)\right)$$

holds. By using Frenet formulas for α and β given in Eq. (2.1), we get

$$c\lambda\left(s\right)k_{2}^{2}\left(s\right) = 0$$

for all $s \in I$. Thus, since $c \in \mathbb{R} - \{0\}$ and $k_2(s) \neq 0$, we get $\lambda(s) = 0$. In this case, we can rewrite Eq.(3.1) as follows

(3.3)
$$\beta(\overline{s}) = \beta(\varphi(s)) = \alpha(s)$$

Thus, there is no any Bertrand mate of $\alpha~$ in Minkowski space-time \mathbb{E}_1^4 other than itself.

As a result of Theorem 3.1, we give the following corollary without proof.

Corollary 3.2. A pseudo null curve α with the curvature function $k_1(s)$ is a pseudo-null Bertrand curve if and only if α is a degenerate plane curve.

4. On Pseudo Null (1,3)-Bertrand Curves in Minkowski Space-time

In this section, firstly we will define pseudo null (1,3)- Bertrand curves with

curvatures $k_1(s) = 1$, $k_2(s) \neq 0$, $k_3(s)$ in Minkowski space-time \mathbb{E}_1^4 and some characterizations of the curves will given.

Definition 4.1. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ and $\beta : \overline{I} \subset \mathbb{R} \to \mathbb{E}_1^4$ be pseudo null curves with curvatures $k_1(s) = 1$, $k_2(s) \neq 0$, $k_3(s)$ and $\overline{k_1}(\varphi(s))$, $\overline{k_2}(\varphi(s))$, $\overline{k_3}(\varphi(s))$, respectively, where $\varphi : I \to \overline{I}, \overline{s} = \varphi(s)$ is a regular C^{∞} -function such that each point $\alpha(s)$ of α corresponds to the point $\beta(\overline{s}) = \beta(\varphi(s))$ of β for all $s \in I$. If the Frenet (1,3)-normal plane at each point $\alpha(s)$ of α coincides with the Frenet (1,3)-normal plane at corresponding point $\beta(\overline{s}) = \beta(\varphi(s))$ of β for all $s \in I$, α is called a pseudo null (1,3)-Bertrand curve in \mathbb{E}_1^4 and β is called a pseudo null (1,3)-Bertrand mate of α .

Theorem 4.2. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null curve with curvature functions $k_1(s) = 1, k_2(s) \neq 0$ and $k_3(s)$. Then, α is a pseudo null (1,3)-Bertrand curve if and only if there exist constant real numbers λ, μ, γ , satisfying the followings:

(4.1-a)
$$\lambda k_2(s) - \mu k_3(s) \neq 0, \ \lambda \neq 0, \ \mu \neq 0$$

(4.1-b)
$$\gamma [\lambda k_2(s) - \mu k_3(s)] + \mu = 1,$$

$$(4.1-c) \qquad \qquad \gamma + k_3(s) = 0$$

for all $s \in I$.

Proof. We assume that α is a pseudo null (1,3)-Bertrand curve parametrized by arclenght s. The pseudo null (1,3)-Bertrand mate β is given by arc-lenght \overline{s} . Then, we can write

(4.2)
$$\beta(\overline{s}) = \beta(\varphi(s)) = \alpha(s) + \lambda(s)N_1(s) + \mu(s)N_3(s)$$

for all $s \in I$, where $\lambda(s)$ and $\mu(s)$ are C^{∞} -functions on I. Differentiating Eq. (4.2) with respect to s, and by using the Frenet equations given in Eq. (2.1), we have

(4.3)
$$\overline{T}(\varphi(s))\varphi'(s) = [1 - \mu(s)]T(s) + \lambda'(s)N_1(s) + [\lambda(s)k_2(s) - \mu(s)k_3(s)]N_2(s) + \mu'(s)N_3(s)$$

for all $s \in I$.

Since the plane spanned by $N_1(s)$ and $N_3(s)$ coincides with the plane spanned by $\overline{N}_1(\varphi(s))$ and $\overline{N}_3(\varphi(s))$, we can write

(4.4)
$$\overline{N}_1(\varphi(s)) = a(s) N_1(s) + b(s) N_3(s),$$

İsmail Gök, Semra Kaya Nurkan and Kazim İlarslan

(4.5)
$$\overline{N}_3(\varphi(s)) = c(s) N_1(s) + d(s) N_3(s)$$

and by using Eq. (4.4) and Eq. (4.5) we can easily see that

$$\lambda'(s) = 0, \ \mu'(s) = 0,$$

that is, λ and μ are constant functions on I.

So, we can rewrite Eq. (4.2) and Eq. (4.3) for all $s \in I$, respectively as follows

(4.6)
$$\beta(\overline{s}) = \beta(\varphi(s)) = \alpha(s) + \lambda N_1(s) + \mu N_3(s)$$

and

(4.7)
$$\overline{T}(\varphi(s))\varphi'(s) = [1-\mu]T(s) + [\lambda k_2(s) - \mu k_3(s)]N_2(s).$$

Here notice that

(4.8)
$$(\varphi'(s))^2 = [1-\mu]^2 + [\lambda k_2(s) - \mu k_3(s)]^2 \neq 0$$

for all $s \in I$. If we consider

(4.9)
$$u(s) = \left[\frac{1-\mu}{\varphi'(s)}\right], \ v(s) = \left[\frac{\lambda k_2(s) - \mu k_3(s)}{\varphi'(s)}\right],$$

it is easy to obtain

(4.10)
$$\overline{T}(\varphi(s)) = u(s)T(s) + v(s)N_2(s)$$

where u(s) and v(s) are C^{∞} -functions on *I*. Differentiating Eq. (4.10) with respect to *s* and using the Frenet equations, we obtain

(4.11)
$$\overline{N}_{1}(\varphi(s))\varphi'(s) = u'(s)T(s) + [u(s) + v(s)k_{3}(s)]N_{1}(s) + v'(s)N_{2}(s) - v(s)k_{2}(s)N_{3}(s).$$

Since $\overline{N}_1(\varphi(s))$ is expressed by linear combination of $N_1(s)$ and $N_3(s)$,

$$u^{\scriptscriptstyle |}(s)=0,\,v^{\scriptscriptstyle |}(s)=0,$$

that is, u and v are constant functions on I. So, we can rewrite Eq. (4.11) as follows

(4.12)
$$\overline{N}_1(\varphi(s))\varphi'(s) = [u + vk_3(s)]N_1(s) - vk_2(s)N_3(s).$$

By using Eq. (4.9), we can show that

(4.13)
$$v(1-\mu) = u(\lambda k_2(s) - \mu k_3(s)),$$

where v must be non-zero. If we take v = 0 in the Eq. (4.12), we get

$$\overline{N}_{1}\left(\varphi\left(s\right)\right)\varphi^{\text{\tiny{L}}}\left(s\right)=uN_{1}(s)$$

thus we obtain $\overline{N}_1(\varphi(s)) = \pm N_1(s)$ for all $s \in I$. This is a contradiction according to the Theorem (3.1). Thus we must consider only the case of $v \neq 0$, and then it is easy to see that

(4.14)
$$\lambda k_2(s) - \mu k_3(s) \neq 0$$

for all $s \in I$. Morever, from the Theorem (3.1) we can easily see that $\lambda \neq 0$ and $\mu \neq 0$. Thus, we obtain relation (4.1-a). If the constant γ is taken as $\gamma = \frac{u}{v}$ and by using Eq. (4.13) we have

$$\gamma \left(\lambda k_2(s) - \mu k_3(s)\right) + \mu = 1$$

for all $s \in I$. Thus we obtained relation (4.1-b). From Eq. (4.12) we have

$$g(\overline{N}_{1}(\varphi(s))\varphi'(s),\overline{N}_{1}(\varphi(s))\varphi'(s)) = -2[u+vk_{3}(s)]vk_{2}(s)$$

and then

(4.15)
$$0 = -2 \left[u + v k_3(s) \right] v k_2(s)$$

for all $s \in I$. Since $k_2(s) \neq 0$ and $v \neq 0$, we get

$$u + vk_3(s) = 0.$$

By using Eq. (4.9), we have

$$\begin{pmatrix} \frac{1-\mu}{\varphi^{\scriptscriptstyle i}(s)} \end{pmatrix} + \left(\frac{\lambda k_2(s) - \mu k_3(s)}{\varphi^{\scriptscriptstyle i}(s)} \right) k_3(s) = 0$$

$$\gamma \left(\lambda k_2(s) - \mu k_3(s) \right) + \left(\lambda k_2(s) - \mu k_3(s) \right) k_3(s) = 0$$

$$\left(\lambda k_2(s) - \mu k_3(s) \right) \left(\gamma + k_3(s) \right) = 0.$$

From Eq. (4.14), it is easy to see that

$$(\gamma + k_3(s)) = 0,$$

for all $s \in I$. Thus, we obtain relation (4.1-c). From Eq. (4.1-b) and Eq. (4.8), we get

(4.16)
$$(\varphi'(s))^2 = (\lambda k_2(s) - \mu k_3(s))^2 [\gamma^2 + 1].$$

From Eq. (4.9) and Eq. (4.12), we have

(4.17)
$$\overline{N}_{1}(\varphi(s)) = \frac{(\lambda k_{2}(s) - \mu k_{3}(s))}{(\varphi'(s))^{2}} \left[(\gamma + k_{3}(s)) N_{1}(s) - k_{2}(s) N_{3}(s) \right],$$

İsmail Gök, Semra Kaya Nurkan and Kazim İlarslan

$$\begin{split} \overline{N}_{1}\left(\varphi\left(s\right)\right) &= -\frac{\left(\lambda k_{2}(s) - \mu k_{3}(s)\right)}{\left(\varphi^{\scriptscriptstyle \mid}\left(s\right)\right)^{2}}k_{2}(s)N_{3}(s),\\ \overline{N}_{1}\left(\varphi\left(s\right)\right) &= -\frac{k_{2}(s)}{\varphi^{\scriptscriptstyle \mid}\left(s\right)}vN_{3}(s). \end{split}$$

Differentiating Eq. (4.17) with respect to s and by using the Frenet equations, we obtain (4.18)

$$\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi^{\scriptscriptstyle |}\left(s\right) = \left(-\frac{k_{2}(s)}{\varphi^{\scriptscriptstyle |}\left(s\right)}\right)^{\scriptscriptstyle |}vN_{3}(s) + \frac{k_{2}(s)}{\varphi^{\scriptscriptstyle |}\left(s\right)}v\left(T(s) + k_{3}(s)N_{2}\left(s\right)\right).$$

Since $\overline{N}_2(\varphi(s)) \in Sp\{T(s), N_2(s)\}$, we obtain

$$\left(-\frac{k_2(s)}{\varphi^{\scriptscriptstyle \mathsf{I}}(s)}\right)^{\scriptscriptstyle \mathsf{I}} = 0$$

that is, $\frac{k_2(s)}{\varphi^{\dagger}(s)}$ is a non-zero constant. So, we can rewrite Eq. (4.18) as follows

$$\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi'(s) = \frac{k_{2}(s)}{\varphi'(s)}v\left(T(s) + k_{3}(s)N_{2}(s)\right).$$

If we denote

(4.19)
$$A(s) = \gamma \left(\gamma^2 + 1\right)^{-1} (1-\mu)^{-1} k_2(s)$$

and

(4.20)
$$B(s) = \gamma \left(\gamma^2 + 1\right)^{-1} (1 - \mu)^{-1} k_2(s) k_3(s).$$

We obtain

$$\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi'(s) = A(s)T(s) + B(s)N_{2}(s).$$

Since $\varphi'(s) \overline{k}_2(\varphi(s)) \overline{N}_2(\varphi(s)) \neq 0$ for $\forall s \in I$, we have

$$\mu \neq 1$$

for all $s \in I$. Thus, we obtain relation (4.1-d).

Conversely, we assume that $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null curve with curvature functions $k_1(s) = 1$, $k_2(s) \neq 0$, $k_3(s)$ satisfying the relation (4.1 - a), (4.1 - b), (4.1 - c) and (4.1 - d) for constant numbers λ , δ , γ and we define a pseudo null curve $\beta : I \subset \mathbb{R} \to \mathbb{E}_1^4$ such as

(4.21)
$$\beta(s) = \alpha(s) + \lambda N_1(s) + \mu N_3(s)$$

for all $s \in I$. Differentiating Eq. (4.21) with respect to s and by using the Frenet equations, we have

$$\frac{d\beta(s)}{ds} = (1 - \mu) T(s) + (\lambda k_2(s) - \mu k_3(s)) N_2(s),$$

thus, by using the Eq. (4.1-b), we obtain

$$\frac{d\beta(s)}{ds} = (\lambda k_2(s) - \mu k_3(s))(\gamma T(s) + N_2(s))$$

for all $s \in I$. Also, we get

(4.22)
$$\left\|\frac{d\beta(s)}{ds}\right\|_{L} = \xi\left(\lambda k_{2}(s) - \mu k_{3}(s)\right)\sqrt{(\gamma^{2}+1)}$$

Then we can write

$$\overline{s} = \varphi(s) = \int_{0}^{s} \left\| \frac{d\beta(t)}{dt} \right\|_{L} dt \qquad (\forall s \in I)$$

where $\varphi: I \to \overline{I}$ is a regular C^{∞} -function, and we obtain

$$\varphi'(s) = \xi \left(\lambda k_2(s) - \mu k_3(s)\right) \sqrt{(\gamma^2 + 1)},$$

for all $s \in I$. Differentiating Eq. (4.21) with respect to s, we get

$$\varphi'(s) \left. \frac{d\beta(\bar{s})}{d\bar{s}} \right|_{\bar{s}=\varphi(s)} = \left(\lambda k_2(s) - \mu k_3(s)\right) \left\{\gamma T(s) + N_2(s)\right\}$$

or

(4.23)
$$\overline{T}(\varphi(s)) = \xi \left(\gamma^2 + 1\right)^{-\frac{1}{2}} \left(\gamma T(s) + N_2(s)\right)$$

for all $s \in I$. Differentiating Eq. (4.23) with respect to s, we have

$$\varphi'(s)\overline{T}'(\varphi(s)) = -\xi (\gamma^2 + 1)^{-\frac{1}{2}} k_2(s) N_3(s).$$

and by using the Frenet equations,

(4.24)
$$\overline{N}_1(\varphi(s)) = \frac{\gamma k_2(s)}{(\gamma^2 + 1)(1 - \mu)} N_3(s).$$

Differentiating Eq. (4.23) with respect to s,

$$\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi'(s) = \frac{\gamma}{\gamma^{2}+1} (1-\mu)^{-1} k_{2}(s) (T(s) + k_{3}(s) N_{2}(s))$$

and

$$g\left(\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi'\left(s\right),\overline{k}_{2}(\varphi(s))\overline{N}_{2}(\varphi(s))\varphi'\left(s\right)\right) = \overline{k}_{2}^{2}(\varphi(s))\varphi'\left(s\right)^{2}$$
$$\overline{k}_{2}^{2}(\varphi(s))\varphi'\left(s\right)^{2} = \frac{\gamma}{\gamma^{2}+1}\left(1-\mu\right)^{-1}k_{2}\left(s\right)\left(1+k_{3}^{2}\left(s\right)\right)$$

İsmail Gök, Semra Kaya Nurkan and Kazim İlarslan

$$\overline{k}_{2}(\varphi(s)) = \left(\frac{\gamma}{1-\mu}\right)^{\frac{3}{2}} \frac{\sqrt{k_{2}\left(s\right)\left(1+k_{3}^{2}\left(s\right)\right)}}{\gamma^{2}+1}.$$

Since $\overline{N}_{3}(\varphi(s))$ is expressed by linear combination of $N_{1}(s)$ and $N_{3}(s)$, we get

(4.25)
$$\overline{N}_3(\varphi(s)) = m(s)N_1(s) + n(s)N_3(s)$$

and

$$g\left(\overline{N}_3(\varphi(s)), \overline{N}_1(\varphi(s))\right) = 1.$$

Besides we can show that

$$m(s)\frac{\gamma k_2(s)}{(\gamma^2 + 1)(1 - \mu)} = 1,$$
$$m(s) = \frac{(\gamma^2 + 1)(1 - \mu)}{\gamma k_2(s)}.$$

Since

$$g\left(\overline{N}_3(\varphi(s)), \overline{N}_3(\varphi(s))\right) = 0,$$

we can show that

$$2m(s)n(s) = 0,$$
$$n(s) \neq 0.$$

So, we can rewrite Eq. (4.25) as follows

(4.26)
$$\overline{N}_{3}(\varphi(s)) = \frac{\left(\gamma^{2}+1\right)\left(1-\mu\right)}{\gamma k_{2}\left(s\right)} N_{1}\left(s\right).$$

Then from the Frenet equations for the curve β and the above equalities, we have

(4.27)
$$\overline{N}_{3}^{'}(\varphi(s)) = -\overline{T}(\varphi(s)) - \overline{k}_{3}(\varphi(s))\overline{N}_{2}(\varphi(s)).$$

Differentiating Eq. (4.26) with respect to s, and by using the Frenet equations,

(4.28)
$$\overline{N}_{3}'(\varphi(s)) = \xi \sqrt{(\gamma^{2}+1)} \left(\left(\frac{1}{k_{2}(s)} \right)' N_{1}(s) + N_{2}(s) \right).$$

So, by using Eq. (4.27) and Eq. (4.28)

$$\overline{k}_3(\varphi(s)) = \xi k_3(s)$$

is obtained. Notice that

$$g\left(\overline{T},\overline{T}\right) = g\left(\overline{N}_{2},\overline{N}_{2}\right) = g\left(\overline{N}_{1},\overline{N}_{3}\right) = 1, \quad g\left(\overline{N}_{1},\overline{N}_{1}\right) = g\left(\overline{N}_{3},\overline{N}_{3}\right) = 0$$

and

$$g\left(\overline{T},\overline{N}_{1}\right) = g\left(\overline{T},\overline{N}_{2}\right) = g\left(\overline{T},\overline{N}_{3}\right) = g\left(\overline{N}_{1},\overline{N}_{2}\right) = g\left(\overline{N}_{2},\overline{N}_{3}\right) = 0,$$

for all $s \in I$ where $\{\overline{T}, \overline{N}_1, \overline{N}_2, \overline{N}_3\}$ is moving Frenet frame along pseudo null curve β in E_1^4 . And it is trivial that the Frenet (1,3)-normal plane at each point $\alpha(s)$ of α coincides with the Frenet (1,3)-normal plane at corresponding point $\beta(\overline{s})$ of β . Hence α is a pseudo null (1,3)- Bertrand curve in \mathbb{E}_1^4 . This completes the proof.

Corollary 4.3. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null (1,3)-Bertrand curve with curvatures functions $k_1(s) = 1$, $k_2(s) \neq 0$, $k_3(s)$ and β be a pseudo null (1,3)-Bertrand mate of α with curvatures functions $\overline{k_1}(\varphi(s))$, $\overline{k_2}(\varphi(s))$, $\overline{k_3}(\varphi(s))$. Then the relations between these curvatures functions are

$$\begin{aligned} k_1(\varphi(s)) &= 1, \\ \overline{k}_2(\varphi(s)) &= \left(\frac{\gamma}{1-\mu}\right)^{\frac{3}{2}} \frac{\sqrt{k_2(s)\left(1+k_3^2(s)\right)}}{\gamma^2+1} \\ \overline{k}_3(\varphi(s)) &= \xi k_3(s), \end{aligned}$$

where

$$\xi = \begin{cases} 1 , \lambda k_2(s) - \mu k_3(s) > 0 \\ -1 , \lambda k_2(s) - \mu k_3(s) < 0 \end{cases}$$

Proof. It is obvious using the similar method in the proof of above theorem.

Corollary 4.4. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null (1,3)-Bertrand curve with curvatures functions $k_1(s) = 1$, $k_2(s) \neq 0$, $k_3(s)$ and β be a pseudo null (1,3)-Bertrand mate of the curve α and $\varphi : I \to \overline{I}, \overline{s} = \varphi(s)$ is a regular C^{∞} -function such that each point $\alpha(s)$ of the curve α corresponds to the point $\beta(\overline{s}) = \beta(\varphi(s))$ of the curve β for all $s \in I$. Then the distance between the points $\alpha(s)$ and $\beta(\overline{s})$ is constant for all $s \in I$.

Proof. Let $\alpha : I \subset \mathbb{R} \to \mathbb{E}_1^4$ be a pseudo null (1,3)-Bertrand curve with curvatures functions $k_1(s) = 1$, $k_2(s) \neq 0$ and $k_3(s)$ and β be a pseudo null (1,3)-Bertrand mate of the curve α . We assume that β is different from α . Let the pairs of $\alpha(s)$ and $\beta(\overline{s}) = \beta(\varphi(s))$ (where $\varphi : I \to \overline{I}, \overline{s} = \varphi(s)$ is a regular C^{∞} -function) be of corresponding points of α and β . Then we can write,

$$\beta(\overline{s}) = \beta(\varphi(s)) = \alpha(s) + \lambda N_1(s) + \mu N_3(s)$$

where λ and μ are non-zero constants. Thus,

$$\beta\left(\overline{s}\right) - \alpha(s) = \lambda N_1(s) + \mu N_3(s)$$

and

$$\|\beta(\overline{s}) - \alpha(s)\| = \sqrt{2\lambda\mu}.$$

So, $d(\alpha(s), \beta(\overline{s})) = \text{constant}$, which completes the proof.

Example: (The pseudo null curve equation given in [8]) Let us consider a pseudo null curve with the equation

$$\alpha(s) = \frac{3}{\sqrt{10}} \left(\frac{1}{9} \cosh(3s), \frac{1}{9} \sinh(3s), \sin(s), -\cos(s) \right).$$

The Frenet Frame of α is given by

$$T(s) = \frac{3}{\sqrt{10}} \left(\frac{1}{3}\sinh(3s), \frac{1}{3}\cosh(3s), \cos(s), \sin(s)\right),$$

$$N_1(s) = \frac{3}{\sqrt{10}} \left(\cosh(3s), \sinh(3s), -\sin(s), \cos(s)\right),$$

$$N_2(s) = \frac{1}{\sqrt{10}} \left(3\sinh(3s), 3\cosh(3s), -\cos(s), -\sin(s)\right),$$

$$N_3(s) = \frac{5}{3\sqrt{10}} \left(-\cosh(3s), -\sinh(3s), -\sin(s), \cos(s)\right).$$

The curvatures of α are

$$k_1(s) = 1, \quad k_2(s) = 3, \quad k_3(s) = \frac{4}{3}.$$

We take constant λ , μ , and γ defined by

$$\lambda = -\frac{17}{18}, \ \mu = -1, \ \gamma = -\frac{4}{3}$$

Then, it is obvious that Eq. (4.1-a), Eq. (4.1-b), Eq. (4.1-c) and Eq. (4.1-d) are hold. Therefore, the curve α is a pseudo-null (1,3)-Bertrand curve in \mathbb{E}_1^4 . In this case, by using Eq. (4.2) the pseudo-null (1,3)-Bertrand mate of the curve α is given as follows:

$$\beta(s) = \frac{-5}{6\sqrt{10}} \left(\cosh(3s), \sinh(3s), -9\sin(s), 9\cos(s) \right).$$

Acknowledgements. The authors would like to express their sincere gratitude to the referee for valuable suggestions to improve the paper.

References

 H. Balgetir, M. Bektaş and M. Ergüt, Bertrand curves for nonnull curves in 3dimensional Lorentzian space, Hadronic J., 27(2)(2004), 229-236.

- [2] H. Balgetir, M. Bektaş and J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat., 23(1)(2004/05), 7-13.
- [3] J. M. Bertrand, Mémoire sur la théorie des courbes à double courbure, Comptes Rendus, 36(1850).
- [4] Ch. Bioche, Sur les courbes de M. Bertrand, Bull. Soc. Math. France, 17(1889), 109-112.
- [5] W. B. Bonnor, Curves with null normals in Minkowski space-time, A random walk in relativity and cosmology, Wiley Easten Limitid, (1985), 33-47.
- [6] J. F. Burke, Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine, 34(1)(1960), 60-62.
- [7] N. Ekmekci and K. İlarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst., 3(2)(2001), 17-24.
- [8] K. İlarslan and E. Nesovic, Some Characterizations Of Pseudo And Partially Null Osculating Curves In Minkowski Space, Int. Electron. J. Geom., 4(2)(2011), 1-12.
- D. H. Jin, Null Bertrand curves in a Lorentz manifold, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 15(3)(2008), 209-215.
- [10] F. Kahraman, I. Gök and K. İlarslan, Generalized Null Bertrand Curves in Minkowski Space-Time, to appear in Scientic Annals of "Al.I. Cuza" University of Iasi (2012).
- [11] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
- [12] M. Külahcı and M. Ergüt, Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Analysis: Theory, Methods & Applications, 70(2009), 1725-1731.
- [13] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J., 50(1-2)(2003), 41-58.
- [14] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [15] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc., 1-10(2)(1935), 180-183.
- [16] B. Rouxel, Sur certaines varietes V^2 2 dimensionelles d'un espace-temps de Minkowski M^4 , Comptes. Rendus. Acad. Sc. Paris, **274**(1972), 1750-1752.
- [17] B. Saint Venant, Mémoire sur les lignes courbes non planes, Journal de l'Ecole Polytechnique, 18(1845), 1-76.
- [18] J. K. Whittemore, Bertrand curves and helices, Duke Math. J., 6(1940), 235-245.