On Pseudo Null Bertrand Curves in Minkowski Space-time

İsmail Gök*
Department of Mathematics, Faculty of Science, Ankara University, 06100, Ankara, Turkey
e-mail: igok@science.ankara.edu.tr
Semra Kaya Nurkan
Department of Mathematics, Faculty of Science and Arts, Usak University, 64200, Usak, Turkey
e-mail: semrakaya_gs@yahoo.com
Kazim İlarslan
Department of Mathematics, Faculty of Sciences and Arts, Kırıkkale University, 71450, Kırıkkale, Turkey
e-mail: kilarslan@yahoo.com

Abstract. In this paper, we prove that there are no pseudo null Bertrand curve with curvature functions $k_{1}(s)=1, k_{2}(s) \neq 0$ and $k_{3}(s)$ other than itself in Minkowski spacetime \mathbb{E}_{1}^{4} and by using the similar idea of Matsuda and Yorozu [13], we define a new kind of Bertrand curve and called it pseudo null $(1,3)$-Bertrand curve. Also we give some characterizations and an example of pseudo null (1,3)-Bertrand curves in Minkowski spacetime.

1. Introduction

Many work has been studied about the general theory of curves in an Euclidean space (or more generally in a Riemannian manifold). So now, we have extensive knowledge on its local geometry as well as its global geometry. Characterization of a regular curve is one of the important and interesting problems in the theory of curves in Euclidean space. There are two ways widely used to solve these problems: to figure out the relationship between the Frenet vectors of the curves (see [11]), and to determine the shape and size of a regular curve by using its curvatures. k_{1} (or \varkappa) and k_{2} (or τ), the curvature functions of a regular curve, have an effective

* Corresponding Author.

Received September 18, 2012; revised January 10, 2013; accepted June 28, 2013. 2010 Mathematics Subject Classification: 53C40, 53C50.
Key words and phrases: Minkowski space-time, pseudo null curve, Frenet vectors, (1, 3)Bertrand curve.
role. For example: if $k_{1}=0=k_{2}$, the curve is a geodesic or if $k_{1}=$ constant $\neq 0$ and $k_{2}=0$, the curve is a circle with radius $\left(1 / k_{1}\right)$, etc..This paper deals with the characterization of Bertrand curve which is one of the samples of regular curves.

In 1845, Saint Venant (see [17]) proposed the question whether the principal normal of a curve is the principal normal of another's on the surface generated by the principal normal of the given one. Bertrand answered this question in [3] published in 1850. He proved that a necessary and sufficient condition for the existence of such a second curve is required in fact a linear relationship calculated with constant coefficients should exist between the first and second curvatures of the given original curve. In other words, if we denote first and second curvatures of a given curve by k_{1} and k_{2} respectively, we have $\lambda k_{1}+\mu k_{2}=1, \lambda, \mu \in \mathbb{R}$. Since 1850, after the paper of Bertrand, the pairs of curves like this have been called Conjugate Bertrand Curves, or more commonly Bertrand Curves (see [11]).

There are many important papers on Bertrand curves in Euclidean space (see: [4],[6],[15]).

When we investigate the properties of Bertrand curves in Euclidean n-space, it is easy to see that either k_{2} or k_{3} is zero which means that Bertrand curves in $\mathbb{E}^{n}(n>3)$ are degenerate curves (see [15]). This result is restated by Matsuda and Yorozu [13]. They proved that there was not any special Bertrand curves in $\mathbb{E}^{n}(n>3)$ and defined a new kind, which is called (1,3)-type Bertrand curves in 4-dimensional Euclidean space. Bertrand curves and their characterizations were studied by many researchers in Minkowski 3 -space and Minkowski space-time (see [1],[2],[7],[9],[10],[18]) as well as in Euclidean space.

In this paper, we prove that there is no any pseudo null Bertrand curve with nonzero curvature function $\left(k_{2}(s)\right)$ other than itself in Minkowski space-time \mathbb{E}_{1}^{4} and define a new kind of Bertrand curves in \mathbb{E}_{1}^{4} calling it as pseudo null $(1,3)$-Bertrand curve. It also gives some characterizations and an example of pseudo null $(1,3)$ Bertrand curves in Minkowski space-time \mathbb{E}_{1}^{4}.

2. Preliminaries

The Minkowski space-time \mathbb{E}_{1}^{4} is the real vector space \mathbb{R}^{4} equipped with indefinite flat metric given by

$$
g=-d x_{1}^{2}+\sum_{i=2}^{4} d x_{i}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a rectangular coordinate system of \mathbb{R}^{4}. Recall that a vector $v \in \mathbb{E}_{1}^{4} \backslash\{0\}$ can be spacelike if $g(v, v)>0$, timelike if $g(v, v)<0$ and null (lightlike) if $g(v, v)=0$. In particular, the vector $v=0$ is a spacelike. The norm of a vector v is given by $\|v\|_{L}=\sqrt{|g(v, v)|}$, and two vectors v and w are said to be orthogonal, if $g(v, w)=0$. An arbitrary curve $\alpha(s)$ in \mathbb{E}_{1}^{4}, can locally be spacelike, timelike or null (lightlike), if all its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null. A spacelike or a timelike curve $\alpha(s)$ has unit speed, if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$ ([14]). We assume that each null curve α in this paper is parametrized by a special
parameter p such that $g\left(\alpha^{\prime \prime}(p), \alpha^{\prime \prime}(p)\right)=1$, which called the distinguished parameter of α.

In a semi-Euclidean space, some normal vectors of a regular curve may be null vectors. In Minkowski space-time, such curves are necessarily spacelike. If its principal normal is null, such curves are called pseudo null curves, if its second normal is null, the curve is called a partially null curve. Curves with null normals have at most two curvatures. These curves were defined and studied by W. B. Bonnor in [5] (see also [16]).

Let $\left\{T, N_{1}, N_{2}, N_{3}\right\}$ be the moving Frenet frame along a pseudo null curve α in \mathbb{E}_{1}^{4}. If α is a pseudo null curve, the Frenet equations are given by ([5]):

$$
\begin{align*}
& T^{\prime}=k_{1} N_{1} \\
& N_{1}^{\prime}=k_{2} N_{2} \\
& N_{2}^{\prime}=k_{3} N_{1}-k_{2} N_{3} \tag{2.1}\\
& N_{3}^{\prime}=-k_{1} T-k_{3} N_{2}
\end{align*}
$$

where the first curvature $k_{1}(s)=0$, if α is a straight line, or $k_{1}(s)=1$ in all other cases. Such curve has two curvatures $k_{2}(s)$ and $k_{3}(s)$. Moreover, the Frenet vectors of a pseudo null curve α satisfy the following conditions:

$$
\begin{gather*}
g(T, T)=g\left(N_{2}, N_{2}\right)=g\left(N_{1}, N_{3}\right)=1, \\
g\left(N_{1}, N_{1}\right)=g\left(N_{3}, N_{3}\right)=0 \tag{2.2}\\
g\left(T, N_{1}\right)=g\left(T, N_{2}\right)=g\left(T, N_{3}\right)=g\left(N_{1}, N_{2}\right)=g\left(N_{2}, N_{3}\right)=0 .
\end{gather*}
$$

In this study we consider that the curve α is not a straight line, that is, the first curvature of $\alpha, k_{1}(s)=1$.

3. On Pseudo Null Bertrand Curves in Minkowski Space-time

In this section, by the following theorem, we prove that there is no any pseudo null Bertrand curves with curvature functions $k_{1}(s)=1, k_{2}(s) \neq 0$ and $k_{3}(s)$ in Minkowski space-time \mathbb{E}_{1}^{4} other than itself.

Theorem 3.1. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with curvature functions $k_{1}(s)=1, k_{2}(s) \neq 0$ and $k_{3}(s)$. Then, there is no any Bertrand mate of α in Minkowski space-time \mathbb{E}_{1}^{4} other than itself.
Proof. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null Bertrand curve in \mathbb{E}_{1}^{4} and $\beta: \bar{I} \subset \mathbb{R} \rightarrow$ \mathbb{E}_{1}^{4} be a pseudo null Bertrand mate of α. We assume that β is different from α. Let the pairs of $\alpha(s)$ and $\beta(\bar{s})=\beta(\varphi(s)$) (where $\varphi: I \rightarrow \bar{I}, \bar{s}=\varphi(s)$ is a regular C^{∞}-function) be corresponding points of α and β. Then we can write,

$$
\begin{equation*}
\beta(\bar{s})=\beta(\varphi(s))=\alpha(s)+\lambda(s) N_{1}(s) \tag{3.1}
\end{equation*}
$$

where λ is a C^{∞}-function on I. Differentiating Eq. (3.1) with respect to s and by using Frenet formulas given in Eq. (2.1), we get

$$
\begin{equation*}
\varphi^{\prime}(s) \bar{T}(\varphi(s))=T(s)+\lambda^{\prime}(s) N_{1}(s)+\lambda(s) k_{2}(s) N_{2}(s) . \tag{3.2}
\end{equation*}
$$

and differentiating Eq. (3.2) with respect to s, we have
$\varphi^{\prime \prime}(s) \bar{T}(\varphi(s))+\left(\varphi^{\prime}(s)\right)^{2} \bar{k}_{1}(\varphi(s)) \bar{N}_{1}(\varphi(s))$
$=\left\{k_{1}(s)+\lambda^{\prime \prime}(s)+\lambda(s) k_{2}(s) k_{3}(s)\right\} N_{1}(s)+\left\{2 \lambda^{\prime}(s) k_{2}(s)+\lambda(s) k_{2}^{\prime}(s)\right\} N_{2}(s)$
$+\left\{-\lambda(s) k_{2}^{2}(s)\right\} N_{3}(s)$
If we take the inner product with $\bar{N}_{1}(\varphi(s))$ on both sides of the last equation, we have

$$
\begin{aligned}
& g\left(\varphi^{\prime \prime}(s) \bar{T}(\varphi(s)), \bar{N}_{1}(\varphi(s))\right)+g\left(\varphi^{\prime}(s)\right)^{2} \bar{k}_{1}(\varphi(s)) \bar{N}_{1}(\varphi(s)), \bar{N}_{1}(\varphi(s)) \\
& =g\left(\left\{k_{1}(s)+\lambda^{\prime \prime}(s)+\lambda(s) k_{2}(s) k_{3}(s)\right\} N_{1}(s), \bar{N}_{1}(\varphi(s))\right) \\
& +g\left(\left\{2 \lambda^{\prime}(s) k_{2}(s)+\lambda(s) k_{2}^{\prime}(s)\right\} N_{2}(s), \bar{N}_{1}(\varphi(s))\right) \\
& -g\left(\lambda(s) k_{2}^{2}(s) N_{3}(s), \bar{N}_{1}(\varphi(s))\right)
\end{aligned}
$$

or if we consider that $\bar{N}_{1}(\varphi(s))$ is parallel to $N_{1}(s)$, that is, $\bar{N}_{1}(\varphi(s))=$ $c N_{1}(s)$ where $c \in \mathbb{R}-\{0\}$ then the above equality

$$
\begin{aligned}
& g\left(\varphi^{\prime \prime}(s) \bar{T}(\varphi(s)), \bar{N}_{1}(\varphi(s))\right)+g\left(\varphi^{\prime}(s)\right)^{2} \bar{k}_{1}(\varphi(s)) \bar{N}_{1}(\varphi(s)), \bar{N}_{1}(\varphi(s)) \\
& =g\left(\left\{k_{1}(s)+\lambda^{\prime \prime}(s)+\lambda(s) k_{2}(s) k_{3}(s)\right\} N_{1}(s), c N_{1}(s)\right) \\
& +g\left(\left\{2 \lambda^{\prime}(s) k_{2}(s)+\lambda(s) k_{2}^{\prime}(s)\right\} N_{2}(s), c N_{1}(s)\right) \\
& -g\left(\lambda(s) k_{2}^{2}(s) N_{3}(s), c N_{1}(s)\right)
\end{aligned}
$$

holds. By using Frenet formulas for α and β given in Eq. (2.1), we get

$$
c \lambda(s) k_{2}^{2}(s)=0
$$

for all $s \in I$. Thus, since $c \in \mathbb{R}-\{0\}$ and $k_{2}(s) \neq 0$, we get $\lambda(s)=0$. In this case, we can rewrite Eq.(3.1) as follows

$$
\begin{equation*}
\beta(\bar{s})=\beta(\varphi(s))=\alpha(s), \tag{3.3}
\end{equation*}
$$

Thus, there is no any Bertrand mate of α in Minkowski space-time \mathbb{E}_{1}^{4} other than itself.

As a result of Theorem 3.1, we give the following corollary without proof.
Corollary 3.2. A pseudo null curve α with the curvature function $k_{1}(s)$ is a pseudo-null Bertrand curve if and only if α is a degenerate plane curve.

4. On Pseudo Null (1,3)-Bertrand Curves in Minkowski Space-time

In this section, firstly we will define pseudo null $(1,3)$ - Bertrand curves with
curvatures $k_{1}(s)=1, k_{2}(s) \neq 0, k_{3}(s)$ in Minkowski space-time \mathbb{E}_{1}^{4} and some characterizations of the curves will given.

Definition 4.1. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ and $\beta: \bar{I} \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be pseudo null curves with curvatures $k_{1}(s)=1, k_{2}(s) \neq 0, k_{3}(s)$ and $\overline{k_{1}}(\varphi(s)), \overline{k_{2}}(\varphi(s)), \overline{k_{3}}(\varphi(s))$, respectively, where $\varphi: I \rightarrow \bar{I}, \bar{s}=\varphi(s)$ is a regular C^{∞}-function such that each point $\alpha(s)$ of α corresponds to the point $\beta(\bar{s})=\beta(\varphi(s))$ of β for all $s \in I$. If the Frenet $(1,3)$-normal plane at each point $\alpha(s)$ of α coincides with the Frenet $(1,3)$-normal plane at corresponding point $\beta(\bar{s})=\beta(\varphi(s))$ of β for all $s \in I, \alpha$ is called a pseudo null $(1,3)$-Bertrand curve in \mathbb{E}_{1}^{4} and β is called a pseudo null $(1,3)$-Bertrand mate of α.

Theorem 4.2. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with curvature functions $k_{1}(s)=1, k_{2}(s) \neq 0$ and $k_{3}(s)$. Then, α is a pseudo null $(1,3)$-Bertrand curve if and only if there exist constant real numbers λ, μ, γ, satisfying the followings:

$$
\begin{equation*}
\lambda k_{2}(s)-\mu k_{3}(s) \neq 0, \lambda \neq 0, \mu \neq 0 \tag{4.1-a}
\end{equation*}
$$

$$
\begin{gather*}
\gamma\left[\lambda k_{2}(s)-\mu k_{3}(s)\right]+\mu=1, \tag{4.1-b}\\
\gamma+k_{3}(s)=0 \tag{4.1-c}
\end{gather*}
$$

$$
\begin{equation*}
\mu \neq 1 \tag{4.1-d}
\end{equation*}
$$

for all $s \in I$.
Proof. We assume that α is a pseudo null (1,3)-Bertrand curve parametrized by $\operatorname{arclenght} s$. The pseudo null $(1,3)$-Bertrand mate β is given by arc-lenght \bar{s}. Then, we can write

$$
\begin{equation*}
\beta(\bar{s})=\beta(\varphi(s))=\alpha(s)+\lambda(s) N_{1}(s)+\mu(s) N_{3}(s) \tag{4.2}
\end{equation*}
$$

for all $s \in I$, where $\lambda(s)$ and $\mu(s)$ are C^{∞}-functions on I. Differentiating Eq. (4.2) with respect to s, and by using the Frenet equations given in Eq. (2.1), we have

$$
\begin{align*}
\bar{T}(\varphi(s)) \varphi^{\prime}(s)= & {[1-\mu(s)] T(s)+\lambda^{\prime}(s) N_{1}(s) } \tag{4.3}\\
& +\left[\lambda(s) k_{2}(s)-\mu(s) k_{3}(s)\right] N_{2}(s)+\mu^{\prime}(s) N_{3}(s)
\end{align*}
$$

for all $s \in I$.
Since the plane spanned by $N_{1}(s)$ and $N_{3}(s)$ coincides with the plane spanned by $\bar{N}_{1}(\varphi(s))$ and $\bar{N}_{3}(\varphi(s))$, we can write

$$
\begin{equation*}
\bar{N}_{1}(\varphi(s))=a(s) N_{1}(s)+b(s) N_{3}(s) \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\bar{N}_{3}(\varphi(s))=c(s) N_{1}(s)+d(s) N_{3}(s) \tag{4.5}
\end{equation*}
$$

and by using Eq. (4.4) and Eq. (4.5) we can easily see that

$$
\lambda^{\prime}(s)=0, \mu^{\prime}(s)=0,
$$

that is, λ and μ are constant functions on I.
So, we can rewrite Eq. (4.2) and Eq. (4.3) for all $s \in I$, respectively as follows

$$
\begin{equation*}
\beta(\bar{s})=\beta(\varphi(s))=\alpha(s)+\lambda N_{1}(s)+\mu N_{3}(s) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{T}(\varphi(s)) \varphi^{\prime}(s)=[1-\mu] T(s)+\left[\lambda k_{2}(s)-\mu k_{3}(s)\right] N_{2}(s) \tag{4.7}
\end{equation*}
$$

Here notice that

$$
\begin{equation*}
\left(\varphi^{\prime}(s)\right)^{2}=[1-\mu]^{2}+\left[\lambda k_{2}(s)-\mu k_{3}(s)\right]^{2} \neq 0 \tag{4.8}
\end{equation*}
$$

for all $s \in I$. If we consider

$$
\begin{equation*}
u(s)=\left[\frac{1-\mu}{\varphi^{\prime}(s)}\right], v(s)=\left[\frac{\lambda k_{2}(s)-\mu k_{3}(s)}{\varphi^{\prime}(s)}\right], \tag{4.9}
\end{equation*}
$$

it is easy to obtain

$$
\begin{equation*}
\bar{T}(\varphi(s))=u(s) T(s)+v(s) N_{2}(s) \tag{4.10}
\end{equation*}
$$

where $u(s)$ and $v(s)$ are C^{∞}-functions on I. Differentiating Eq. (4.10) with respect to s and using the Frenet equations, we obtain

$$
\begin{gather*}
\bar{N}_{1}(\varphi(s)) \varphi^{\prime}(s)=u^{\prime}(s) T(s)+\left[u(s)+v(s) k_{3}(s)\right] N_{1}(s) \tag{4.11}\\
+v^{\prime}(s) N_{2}(s)-v(s) k_{2}(s) N_{3}(s) .
\end{gather*}
$$

Since $\bar{N}_{1}(\varphi(s))$ is expressed by linear combination of $N_{1}(s)$ and $N_{3}(s)$,

$$
u^{\prime}(s)=0, v^{\prime}(s)=0,
$$

that is, u and v are constant functions on I. So, we can rewrite Eq. (4.11) as follows

$$
\begin{equation*}
\bar{N}_{1}(\varphi(s)) \varphi^{\prime}(s)=\left[u+v k_{3}(s)\right] N_{1}(s)-v k_{2}(s) N_{3}(s) \tag{4.12}
\end{equation*}
$$

By using Eq. (4.9), we can show that

$$
\begin{equation*}
v(1-\mu)=u\left(\lambda k_{2}(s)-\mu k_{3}(s)\right), \tag{4.13}
\end{equation*}
$$

where v must be non-zero. If we take $v=0$ in the Eq. (4.12), we get

$$
\bar{N}_{1}(\varphi(s)) \varphi^{\prime}(s)=u N_{1}(s)
$$

thus we obtain $\bar{N}_{1}(\varphi(s))= \pm N_{1}(s)$ for all $s \in I$. This is a contradiction according to the Theorem (3.1). Thus we must consider only the case of $v \neq 0$, and then it is easy to see that

$$
\begin{equation*}
\lambda k_{2}(s)-\mu k_{3}(s) \neq 0 \tag{4.14}
\end{equation*}
$$

for all $s \in I$. Morever, from the Theorem (3.1) we can easily see that $\lambda \neq 0$ and $\mu \neq 0$. Thus, we obtain relation (4.1-a).

If the constant γ is taken as $\gamma=\frac{u}{v}$ and by using Eq. (4.13) we have

$$
\gamma\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)+\mu=1
$$

for all $s \in I$. Thus we obtained relation (4.1-b).
From Eq. (4.12) we have

$$
g\left(\bar{N}_{1}(\varphi(s)) \varphi^{\prime}(s), \bar{N}_{1}(\varphi(s)) \varphi^{\prime}(s)\right)=-2\left[u+v k_{3}(s)\right] v k_{2}(s)
$$

and then

$$
\begin{equation*}
0=-2\left[u+v k_{3}(s)\right] v k_{2}(s) \tag{4.15}
\end{equation*}
$$

for all $s \in I$. Since $k_{2}(s) \neq 0$ and $v \neq 0$, we get

$$
u+v k_{3}(s)=0
$$

By using Eq. (4.9), we have

$$
\begin{aligned}
\left(\frac{1-\mu}{\varphi^{\prime}(s)}\right)+\left(\frac{\lambda k_{2}(s)-\mu k_{3}(s)}{\varphi^{\prime}(s)}\right) k_{3}(s) & =0 \\
\gamma\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)+\left(\lambda k_{2}(s)-\mu k_{3}(s)\right) k_{3}(s) & =0 \\
\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)\left(\gamma+k_{3}(s)\right) & =0
\end{aligned}
$$

From Eq. (4.14), it is easy to see that

$$
\left(\gamma+k_{3}(s)\right)=0,
$$

for all $s \in I$. Thus, we obtain relation (4.1-c).
From Eq. (4.1-b) and Eq. (4.8), we get

$$
\begin{equation*}
\left(\varphi^{\prime}(s)\right)^{2}=\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)^{2}\left[\gamma^{2}+1\right] \tag{4.16}
\end{equation*}
$$

From Eq. (4.9) and Eq. (4.12), we have

$$
\begin{equation*}
\bar{N}_{1}(\varphi(s))=\frac{\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)}{\left(\varphi^{\prime}(s)\right)^{2}}\left[\left(\gamma+k_{3}(s)\right) N_{1}(s)-k_{2}(s) N_{3}(s)\right] \tag{4.17}
\end{equation*}
$$

$$
\begin{gathered}
\bar{N}_{1}(\varphi(s))=-\frac{\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)}{\left(\varphi^{\prime}(s)\right)^{2}} k_{2}(s) N_{3}(s) \\
\bar{N}_{1}(\varphi(s))=-\frac{k_{2}(s)}{\varphi^{\prime}(s)} v N_{3}(s)
\end{gathered}
$$

Differentiating Eq. (4.17) with respect to s and by using the Frenet equations, we obtain
(4.18)

$$
\bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s)=\left(-\frac{k_{2}(s)}{\varphi^{\prime}(s)}\right)^{\prime} v N_{3}(s)+\frac{k_{2}(s)}{\varphi^{\prime}(s)} v\left(T(s)+k_{3}(s) N_{2}(s)\right) .
$$

Since $\bar{N}_{2}(\varphi(s)) \in S p\left\{T(s), N_{2}(s)\right\}$, we obtain

$$
\left(-\frac{k_{2}(s)}{\varphi^{\prime}(s)}\right)^{\prime}=0
$$

that is, $\frac{k_{2}(s)}{\varphi^{\prime}(s)}$ is a non-zero constant.So, we can rewrite Eq. (4.18) as follows

$$
\bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s)=\frac{k_{2}(s)}{\varphi^{\prime}(s)} v\left(T(s)+k_{3}(s) N_{2}(s)\right)
$$

If we denote

$$
\begin{equation*}
A(s)=\gamma\left(\gamma^{2}+1\right)^{-1}(1-\mu)^{-1} k_{2}(s) \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
B(s)=\gamma\left(\gamma^{2}+1\right)^{-1}(1-\mu)^{-1} k_{2}(s) k_{3}(s) . \tag{4.20}
\end{equation*}
$$

We obtain

$$
\bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s)=A(s) T(s)+B(s) N_{2}(s)
$$

Since $\varphi^{\prime}(s) \bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \neq 0$ for $\forall s \in I$, we have

$$
\mu \neq 1
$$

for all $s \in I$. Thus, we obtain relation (4.1-d).
Conversely, we assume that $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null curve with curvature functions $k_{1}(s)=1, k_{2}(s) \neq 0, k_{3}(s)$ satisfying the relation $(4.1-a)$, $(4.1-b),(4.1-c)$ and $(4.1-d)$ for constant numbers λ, δ, γ and we define a pseudo null curve $\beta: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ such as

$$
\begin{equation*}
\beta(s)=\alpha(s)+\lambda N_{1}(s)+\mu N_{3}(s) \tag{4.21}
\end{equation*}
$$

for all $s \in I$. Differentiating Eq. (4.21) with respect to s and by using the Frenet equations, we have

$$
\frac{d \beta(s)}{d s}=(1-\mu) T(s)+\left(\lambda k_{2}(s)-\mu k_{3}(s)\right) N_{2}(s)
$$

thus, by using the Eq. (4.1-b), we obtain

$$
\frac{d \beta(s)}{d s}=\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)\left(\gamma T(s)+N_{2}(s)\right)
$$

for all $s \in I$. Also, we get

$$
\begin{equation*}
\left\|\frac{d \beta(s)}{d s}\right\|_{L}=\xi\left(\lambda k_{2}(s)-\mu k_{3}(s)\right) \sqrt{\left(\gamma^{2}+1\right)} \tag{4.22}
\end{equation*}
$$

Then we can write

$$
\bar{s}=\varphi(s)=\int_{0}^{s}\left\|\frac{d \beta(t)}{d t}\right\|_{L} d t \quad(\forall s \in I)
$$

where $\varphi: I \rightarrow \bar{I}$ is a regular C^{∞}-function, and we obtain

$$
\varphi^{\prime}(s)=\xi\left(\lambda k_{2}(s)-\mu k_{3}(s)\right) \sqrt{\left(\gamma^{2}+1\right)}
$$

for all $s \in I$. Differentiating Eq. (4.21) with respect to s, we get

$$
\left.\varphi^{\prime}(s) \frac{d \beta(\bar{s})}{d \bar{s}}\right|_{\bar{s}=\varphi(s)}=\left(\lambda k_{2}(s)-\mu k_{3}(s)\right)\left\{\gamma T(s)+N_{2}(s)\right\}
$$

or

$$
\begin{equation*}
\bar{T}(\varphi(s))=\xi\left(\gamma^{2}+1\right)^{-\frac{1}{2}}\left(\gamma T(s)+N_{2}(s)\right) \tag{4.23}
\end{equation*}
$$

for all $s \in I$. Differentiating Eq. (4.23) with respect to s, we have

$$
\varphi^{\prime}(s) \bar{T}^{\prime}(\varphi(s))=-\xi\left(\gamma^{2}+1\right)^{-\frac{1}{2}} k_{2}(s) N_{3}(s) .
$$

and by using the Frenet equations,

$$
\begin{equation*}
\bar{N}_{1}(\varphi(s))=\frac{\gamma k_{2}(s)}{\left(\gamma^{2}+1\right)(1-\mu)} N_{3}(s) . \tag{4.24}
\end{equation*}
$$

Differentiating Eq. (4.23) with respect to s,

$$
\bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s)=\frac{\gamma}{\gamma^{2}+1}(1-\mu)^{-1} k_{2}(s)\left(T(s)+k_{3}(s) N_{2}(s)\right)
$$

and

$$
\begin{gathered}
g\left(\bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s), \bar{k}_{2}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \varphi^{\prime}(s)\right)=\bar{k}_{2}^{2}(\varphi(s)) \varphi^{\prime}(s)^{2} \\
\bar{k}_{2}^{2}(\varphi(s)) \varphi^{\prime}(s)^{2}=\frac{\gamma}{\gamma^{2}+1}(1-\mu)^{-1} k_{2}(s)\left(1+k_{3}^{2}(s)\right)
\end{gathered}
$$

$$
\bar{k}_{2}(\varphi(s))=\left(\frac{\gamma}{1-\mu}\right)^{\frac{3}{2}} \frac{\sqrt{k_{2}(s)\left(1+k_{3}^{2}(s)\right)}}{\gamma^{2}+1}
$$

Since $\bar{N}_{3}(\varphi(s))$ is expressed by linear combination of $N_{1}(s)$ and $N_{3}(s)$, we get

$$
\begin{equation*}
\bar{N}_{3}(\varphi(s))=m(s) N_{1}(s)+n(s) N_{3}(s) \tag{4.25}
\end{equation*}
$$

and

$$
g\left(\bar{N}_{3}(\varphi(s)), \bar{N}_{1}(\varphi(s))\right)=1 .
$$

Besides we can show that

$$
\begin{aligned}
& m(s) \frac{\gamma k_{2}(s)}{\left(\gamma^{2}+1\right)(1-\mu)}=1 \\
& m(s)=\frac{\left(\gamma^{2}+1\right)(1-\mu)}{\gamma k_{2}(s)}
\end{aligned}
$$

Since

$$
g\left(\bar{N}_{3}(\varphi(s)), \bar{N}_{3}(\varphi(s))\right)=0
$$

we can show that

$$
\begin{gathered}
2 m(s) n(s)=0, \\
n(s) \neq 0 .
\end{gathered}
$$

So, we can rewrite Eq. (4.25) as follows

$$
\begin{equation*}
\bar{N}_{3}(\varphi(s))=\frac{\left(\gamma^{2}+1\right)(1-\mu)}{\gamma k_{2}(s)} N_{1}(s) . \tag{4.26}
\end{equation*}
$$

Then from the Frenet equations for the curve β and the above equalities, we have

$$
\begin{equation*}
\bar{N}_{3}^{\prime}(\varphi(s))=-\bar{T}(\varphi(s))-\bar{k}_{3}(\varphi(s)) \bar{N}_{2}(\varphi(s)) \tag{4.27}
\end{equation*}
$$

Differentiating Eq. (4.26) with respect to s, and by using the Frenet equations,

$$
\begin{equation*}
\bar{N}_{3}^{\prime}(\varphi(s))=\xi \sqrt{\left(\gamma^{2}+1\right)}\left(\left(\frac{1}{k_{2}(s)}\right)^{\prime} N_{1}(s)+N_{2}(s)\right) . \tag{4.28}
\end{equation*}
$$

So, by using Eq. (4.27) and Eq. (4.28)

$$
\bar{k}_{3}(\varphi(s))=\xi k_{3}(s)
$$

is obtained. Notice that

$$
g(\bar{T}, \bar{T})=g\left(\bar{N}_{2}, \bar{N}_{2}\right)=g\left(\bar{N}_{1}, \bar{N}_{3}\right)=1, \quad g\left(\bar{N}_{1}, \bar{N}_{1}\right)=g\left(\bar{N}_{3}, \bar{N}_{3}\right)=0
$$

and

$$
g\left(\bar{T}, \bar{N}_{1}\right)=g\left(\bar{T}, \bar{N}_{2}\right)=g\left(\bar{T}, \bar{N}_{3}\right)=g\left(\bar{N}_{1}, \bar{N}_{2}\right)=g\left(\bar{N}_{2}, \bar{N}_{3}\right)=0
$$

for all $s \in I$ where $\left\{\bar{T}, \bar{N}_{1}, \bar{N}_{2}, \bar{N}_{3}\right\}$ is moving Frenet frame along pseudo null curve β in E_{1}^{4}. And it is trivial that the Frenet (1,3)-normal plane at each point $\alpha(s)$ of α coincides with the Frenet $(1,3)$-normal plane at corresponding point $\beta(\bar{s})$ of β. Hence α is a pseudo null $(1,3)$ - Bertrand curve in \mathbb{E}_{1}^{4}. This completes the proof.

Corollary 4.3. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null $(1,3)$-Bertrand curve with curvatures functions $k_{1}(s)=1, k_{2}(s) \neq 0, k_{3}(s)$ and β be a pseudo null (1,3)Bertrand mate of α with curvatures functions $\overline{k_{1}}(\varphi(s)), \overline{k_{2}}(\varphi(s)), \overline{k_{3}}(\varphi(s))$. Then the relations between these curvatures functions are

$$
\begin{aligned}
& \bar{k}_{1}(\varphi(s))=1 \\
& \bar{k}_{2}(\varphi(s))=\left(\frac{\gamma}{1-\mu}\right)^{\frac{3}{2}} \frac{\sqrt{k_{2}(s)\left(1+k_{3}^{2}(s)\right)}}{\gamma^{2}+1} \\
& \bar{k}_{3}(\varphi(s))=\xi k_{3}(s)
\end{aligned}
$$

where

$$
\xi=\left\{\begin{array}{cc}
1, & \lambda k_{2}(s)-\mu k_{3}(s)>0 \\
-1, & \lambda k_{2}(s)-\mu k_{3}(s)<0
\end{array} .\right.
$$

Proof. It is obvious using the similar method in the proof of above theorem.
Corollary 4.4. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null $(1,3)$-Bertrand curve with curvatures functions $k_{1}(s)=1, k_{2}(s) \neq 0, k_{3}(s)$ and β be a pseudo null (1,3)Bertrand mate of the curve α and $\varphi: I \rightarrow \bar{I}, \bar{s}=\varphi(s)$ is a regular C^{∞}-function such that each point $\alpha(s)$ of the curve α corresponds to the point $\beta(\bar{s})=\beta(\varphi(s))$ of the curve β for all $s \in I$. Then the distance between the points $\alpha(s)$ and $\beta(\bar{s})$ is constant for all $s \in I$.
Proof. Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}_{1}^{4}$ be a pseudo null $(1,3)$-Bertrand curve with curvatures functions $k_{1}(s)=1, k_{2}(s) \neq 0$ and $k_{3}(s)$ and β be a pseudo null $(1,3)$-Bertrand mate of the curve α. We assume that β is different from α. Let the pairs of $\alpha(s)$ and $\beta(\bar{s})=\beta(\varphi(s))$ (where $\varphi: I \rightarrow \bar{I}, \bar{s}=\varphi(s)$ is a regular C^{∞}-function) be of corresponding points of α and β. Then we can write,

$$
\beta(\bar{s})=\beta(\varphi(s))=\alpha(s)+\lambda N_{1}(s)+\mu N_{3}(s)
$$

where λ and μ are non-zero constants. Thus,

$$
\beta(\bar{s})-\alpha(s)=\lambda N_{1}(s)+\mu N_{3}(s)
$$

and

$$
\|\beta(\bar{s})-\alpha(s)\|=\sqrt{2 \lambda \mu}
$$

So, $d(\alpha(s), \beta(\bar{s}))=$ constant, which completes the proof.
Example: (The pseudo null curve equation given in [8]) Let us consider a pseudo null curve with the equation

$$
\alpha(s)=\frac{3}{\sqrt{10}}\left(\frac{1}{9} \cosh (3 s), \frac{1}{9} \sinh (3 s), \sin (s),-\cos (s)\right) .
$$

The Frenet Frame of α is given by

$$
\begin{aligned}
T(s) & =\frac{3}{\sqrt{10}}\left(\frac{1}{3} \sinh (3 s), \frac{1}{3} \cosh (3 s), \cos (s), \sin (s)\right), \\
N_{1}(s) & =\frac{3}{\sqrt{10}}(\cosh (3 s), \sinh (3 s),-\sin (s), \cos (s)), \\
N_{2}(s) & =\frac{1}{\sqrt{10}}(3 \sinh (3 s), 3 \cosh (3 s),-\cos (s),-\sin (s)), \\
N_{3}(s) & =\frac{5}{3 \sqrt{10}}(-\cosh (3 s),-\sinh (3 s),-\sin (s), \cos (s)) .
\end{aligned}
$$

The curvatures of α are

$$
k_{1}(s)=1, \quad k_{2}(s)=3, \quad k_{3}(s)=\frac{4}{3}
$$

We take constant λ, μ, and γ defined by

$$
\lambda=-\frac{17}{18}, \quad \mu=-1, \quad \gamma=-\frac{4}{3}
$$

Then, it is obvious that Eq. (4.1-a), Eq. (4.1-b), Eq. (4.1-c) and Eq. (4.1-d) are hold. Therefore, the curve α is a pseudo-null $(1,3)$-Bertrand curve in \mathbb{E}_{1}^{4}. In this case, by using Eq. (4.2) the pseudo-null (1,3)-Bertrand mate of the curve α is given as follows:

$$
\beta(s)=\frac{-5}{6 \sqrt{10}}(\cosh (3 s), \sinh (3 s),-9 \sin (s), 9 \cos (s)) .
$$

Acknowledgements. The authors would like to express their sincere gratitude to the referee for valuable suggestions to improve the paper.

References

[1] H. Balgetir, M. Bektaş and M. Ergüt, Bertrand curves for nonnull curves in 3dimensional Lorentzian space, Hadronic J., 27(2)(2004), 229-236.
[2] H. Balgetir, M. Bektaş and J. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat., 23(1)(2004/05), 7-13.
[3] J. M. Bertrand, Mémoire sur la théorie des courbes á double courbure, Comptes Rendus, $\mathbf{3 6}(1850)$.
[4] Ch. Bioche, Sur les courbes de M. Bertrand, Bull. Soc. Math. France, 17(1889), 109112.
[5] W. B. Bonnor, Curves with null normals in Minkowski space-time, A random walk in relativity and cosmology, Wiley Easten Limitid, (1985), 33-47.
[6] J. F. Burke, Bertrand Curves Associated with a Pair of Curves, Mathematics Magazine, 34(1)(1960), 60-62.
[7] N. Ekmekci and K. İlarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst., 3(2)(2001), 17-24.
[8] K. İlarslan and E. Nesovic, Some Characterizations Of Pseudo And Partially Null Osculating Curves In Minkowski Space, Int. Electron. J. Geom., 4(2)(2011), 1-12.
[9] D. H. Jin, Null Bertrand curves in a Lorentz manifold, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math., 15(3)(2008), 209-215.
[10] F. Kahraman, İ. Gök and K. İlarslan, Generalized Null Bertrand Curves in Minkowski Space-Time, to appear in Scientic Annals of "Al.I. Cuza" University of Iasi (2012).
[11] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, Braunschweig, Wiesbaden, (1999).
[12] M. Külahcı and M. Ergüt, Bertrand curves of $A W(k)$-type in Lorentzian space, Nonlinear Analysis: Theory, Methods \& Applications, 70(2009), 1725-1731.
[13] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J., 50(12) (2003), 41-58.
[14] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
[15] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc., 1$\mathbf{1 0 (2) (1 9 3 5) , ~ 1 8 0 - 1 8 3 . ~}$
[16] B. Rouxel, Sur certaines varietes $V^{2} 2$ dimensionelles d'un espace-temps de Minkowski M^{4}, Comptes. Rendus. Acad. Sc. Paris, 274(1972), 1750-1752.
[17] B. Saint Venant, Mémoire sur les lignes courbes non planes, Journal de l'Ecole Polytechnique, 18(1845), 1-76.
[18] J. K. Whittemore, Bertrand curves and helices, Duke Math. J., 6(1940), 235-245.

