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Abstract. The number of topologies (non-homeomorphic topologies) on a fixed finite

set having n elements are now known up to n = 18 (n = 16 respectively) but still no

complete formula yet. There are one to one correspondences among topologies, preorders

and transitive digraphs on a given finite set. In this article, we enumerate topologies and

non-homeomorphic topologies whose underlying graph is a given finite simple graph.

1. Introduction

A topology on a finite set, a finite topology is often used to demonstrate inter-
esting phenomena and counterexamples to plausible sounding conjectures. Finite
topology also plays a key role in the theory of image analysis [4, 5], the structures
of molecular [7, 8], geometries of finite sets [10] and digital topology. For any pos-
itive integer k ≥ 2, there exists a positive integer n and a topology T on an n-set
such that |T | = k and the minimum such number n has been studied [9]. One
research problem on finite topology is to enumerate the number of topologies and
non-homeomorphic topologies on a fixed finite set, we denote them by τ̄(n) and
~(n), respectively, where n is the cardinality of the finite set [1]. Due to many dif-
ferent works, these numbers are now known up to n = 18 and n = 16, respectively,
but we do not know complete formulas yet [11].

It is not difficult to relate a topology on a finite set with a preorder on the finite
set. It can be briefly explained as follows. Let X be a finite set. A relation R
on X is called a preorder if it is reflexive and transitive. For a topology T on X,
we define a relation R(T) on X by a rule that (x, y) ∈ R(T) if and only if every

* Corresponding Author.
Received April, 18 2014; accepted August 5, 2014.
2010 Mathematics Subject Classification: 05A99, 05C20.
Key words and phrases: finite topology, preorder, graph.

655



656 D. Kim, Y. S. Kwon and J. Lee

open set containing x also contains y, that is, x ∈ {y}
T
, where A

T
is the closure

of A with respect to the topology T. Then R(T) is a preorder on X. We call it
the preorder associated with the topology T. Conversely, for a preorder R on X, let
T(R) = {U ⊂ X : ∀x ∈ U,R(x) ⊂ U}, where R(x) = {y : (x, y) ∈ R}. Then T(R)
is a topology on X and call it the topology corresponding to the preorder R. Notice
that {R(x) : x ∈ X} is a base for the topology T(R).

Let G be a finite simple graph with vertex set V (G) and edge set E(G). We
use |X| for the cardinality of a set X. Ever since the pioneer work of Evans, Harary
and Lynn [2], counting such topologies can be done by counting digraphs as follows.
For a preorder R on X, let D(R) be the direct graph whose vertex set is X and arc
set is R \∆(X) = {(x, y) : x ̸= y and (x, y) ∈ R}. For a digraph D, the underlying
graph of D is the graph whose vertex set is equal to that of V (D) and edge set is
{{x, y} : xy or yx is an arc of D}. Notice that there are 3|E(G)| directed graphs (or
digraphs) whose underlying graph is a given finite simple graph G. For a topology
T on X, we say the underlying graph of T is that of the digraph corresponding to
the preorder associated with T. Notice that the digraph D(R) corresponding to a
preorder R is transitive, i.e., for any pair of distinct vertices a and c if ab and bc are
arcs of D(R), then ac is also an arc of D(R). Example 2.1 can help to understand
these relations if the reader is not familiar with graph theory. For terms in graph
theory, we refer to [3].

There have been a few results on finite topology, preorder and digraphs. Evans
et.al found a relation between labeled topologies on n points and the labeled transi-
tive digraphs with n points [2]. Marijuan found a few useful properties on digraphs
and topologies and relations between finite acyclic transitive digraphs and T0 topolo-
gies [6].

In the present article, we mainly focus on graphs and unlabeled(non-homeomor-
phic) topologies and we enumerate topologies whose underlying graph is a given
finite simple graph G, in other word, we enumerate the number of topologies and
non-homeomorphic topologies with respect to the underlying graphs instead of the
number of vertices of graphs. For a given graph G, let Top (G) be the set of
topologies having G as its underlying graph. Similarly, let τ̄(G) = |Top (G)| and let
~(G) be the number of non-homeomorphic topologies whose underlying graph is G.
Notice that τ̄(G) is equal to the number of transitive digraphs whose underlying
graph is G.

The outline of this article is as follows. First, we will provide precise definitions
and some general formulae in Section 2. In Section 3, we study how τ̄(G), ~(G) are
related with graph operations. In Section 4, we find τ̄(G), ~(G) for a few graphs.

2. General Formulae

For a finite set X, let Top (X) be the set of all topologies on X. Two topologies
T1 on a set X and T2 on a set Y are equivalent if the two topological spaces
(X,T1) and (X,T2) are homeomorphic. For a natural number n, let Nn be the set
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{1, 2, . . . , n}. For convenience, let τ̄(n) = |Top (Nn)| and let ~(n) be the number of
non-homeomorphic topologies on Nn. It is clear that τ̄(1) = 1 and ~(1) = 1.

Example 2.1. Let X = {a, b} and let T = {∅, {a}, X}. Then T is a topology on
X. The preorder R(T) associated with T is {(a, a), (b, b), (b, a)} and the underlying
graph of T is the complete graph K2 on two vertices a and b. Let R = ∆(X) =
{(a, a), (b, b))}. Then R is a preorder on X. The topology T(R) associated with R
is the discrete topology on X and the underlying graph of T(R) is the null graph
N2 on two vertices a and b.

The following example demonstrates the topologies whose underlying graph is
the complete graph K2 with two vertices {a, b}.

Example 2.2. Let X = {a, b}. Then T1 = {∅, X}, T2 = {∅, {a}, X}, T3 =
{∅, {b}, X} and T4 = {∅, {a}, {b}, X} are the list of all topologies on X. So,
τ̄(2) = 4. Since (X,T2) and (X,T3) are homeomorphic, ~(2) = 3. It is clear
that Top (K2) = {T1, T2, T3}. This implies that τ̄(K2) = 3 and ~(K2) = 2.

Some properties of finite topological spaces can be described by graph theoret-
ical terminologies. The following lemma should be previously known, however, we
could not find any exact references. Thus, we provide it in our language.

Lemma 2.3. Let (X,TX) and (Y,TY ) be two finite topological spaces. Then we
have

(a) a function f : (X,TX) → (Y,TY ) is continuous if and only if f : (X,R(TX)) →
(Y,R(TY )) preserves the relation, that is, f is a graph homomorphism be-
tween the two digraphs D(R(TX)) and D(R(TY )),

(b) the number of components of the topological space (X,TX) is equal to that of
the underlying graph of TX . In particular, (X,TX) is connected if and only
if the underlying graph of TX is connected.

Proof. (a) Let f : (X,TX) → (Y,TY ) be a continuous function. If (x1, x2) ∈ R(TX)

then x1 ∈ {x2}
TX

and f(x1) ∈ f({x2}
TX

). Since f is continuous, f({x2}
TX

) ⊂
{f(x2)}

TY
and hence f(x1) ∈ {f(x2)}

TY
. This implies that (f(x1), f(x2)) ∈ R(TY ).

Conversely, let A be a subset of X and let a ∈ A. If x ∈ {a}
TX

then (x, a) ∈ R(TX).

Since f is a graph homomorphism, (f(x), f(a)) ∈ R(TY ) and so f(x) ∈ {f(a)}
TY

.

This implies that f({a}
TX

) ⊂ {f(a)}
TY

. Since A
TX

= ∪a∈A{a}
TX

, we have

f
(
A

TX
)

= f

(∪
a∈A

{a}
TX

)
=
∪
a∈A

f
(
{a}

TX
)
⊂
∪
a∈A

{f(a)}
TY

=
∪
a∈A

{f(a)}
TY

= f(A)
TY
.
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(b) Let C be a component of the topological space (X,TX). Since X is finite,
every component of (X,TX) is closed and open subset and so C = ∪x∈CR(x). For
our convenience, let G be the underlying graph of TX . Suppose that the subgraph
G[C] of G induced by C is disconnected. Without loss of generality, we may assume
that G[C] is composed of two components H1 and H2. Then C is the union of
two subsets ∪x∈V (H1)R(x) and ∪x∈V (H2)R(x). Since these two sets are open and
disjoint, C is disconnected. This is a contradiction. Hence, the subgraph G[C] of G
induced by C is connected. Conversely, let H be a component of G. Suppose that
V (H) is a disconnected subset of (X,TX). Then V (H) is a disjoint union of two
open subsets A and B. Since A = ∪x∈AR(x) and B = ∪x∈BR(x), there is no path
from any fixed vertex a of A to any fixed vertex b of B in H. This contracts to the
hypothesis that H is connected.

It follows from Lemma 2.3 (a) that ~(G) is equal to the number of isomorphism
classes of transitive digraphs whose underlying graph is G.

Let T1 and T2 be two topologies on Nn. If they are the same, then their
underlying graphs are also the same. So, two topologies having distinct underlying
graphs can not be the same. For a graph G, let Aut (G) be the group of graph

automorphisms of G. Now there are
|V (G)|!
|Aut (G)|

graphs on V (G) that are isomorphic

to G. The following proposition comes from this observation.

Proposition 2.4. Let n be a natural number. Then we have

τ̄(n) =
∑
G

n!

|Aut (G)|
τ̄(G) and ~(n) =

∑
G

~(G),

where G runs over all representatives of isomorphism classes of graphs of n vertices
and Aut (G) is the group of all graph automorphisms of G.

In order to complete the computation τ̄(n) and ~(n), we need to compute τ̄(G)
and ~(G) for a given graph G.

For a graph G, let TD(G) be the set of transitive digraphs whose underlying
graph is G. Then Aut (G) acts on the set TD(G) and ~(G) = |TD(G)/Aut (G)| by
Lemma 2.3 (a). Now, the following lemma comes from the Burnside lemma.

Lemma 2.5. Let G be a connected graph and let TD(G) be the set of transitive
digraphs whose underlying graph is G. Then

~(G) =
1

|Aut (G)|
∑

σ ∈ Aut (G)

|Fix σ|,

where Fix σ = {D ∈ TD(G) : σ(D) = D}.

It is easy to show that every vertex induced subgraph of a transitive digraph is
transitive. From this, we can have the following lemma.
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Lemma 2.6. For any graph G, τ̄(G) = 0 if and only if there exists a vertex induced
subgraph H of G such that τ̄(H) = 0.

A graph G is said to be triangle free if G dose not contain any triangles. Let
G be a triangle free graph having at most three vertices. Then every vertex of a
transitive digraph having G as its underlying graph is a source or a sink. Since every
source is adjacent to a sink and vise versa, τ̄(G) ̸= 0 if and only if G is bipartite.

A bipartite graph G having vertex bipartition X1 ∪ X2 is said to be reflexible
if there exists a graph automorphism f : G → G such that f(X1) = X2 and
f(X2) = X1. For example, complete bipartite graph Km,n is reflexible if and only
if m = n. If G is a connected bipartite graph having two vertices, then G must
be K2. It is observed in Example 2.2 that τ̄(K2) = 3 and ~(K2) = 2. Let G be
a connected bipartite graph having at least three vertices and let X1 and X2 be a
vertex bipartition of G. Let D be a transitive digraph whose underlying graph is G.
Then every vertex in X1 is a source and every vertex in X2 is a sink or vice versa.
It implies that the number of transitive digraphs having G as its underlying graph
is 2. Moreover, the two digraphs are isomorphic if and only if G is reflexible. We
summarize this discussion as follows.

Theorem 2.7. For a triangle free graph G, τ̄(G) ̸= 0 if and only if G is bipartite.
Moreover, for a connected bipartite graph G having at least two vertices, we have

τ̄(G) =

{
3 if G = K2,
2 if G ̸= K2,

~(G) =
{

1 if G ̸= K2 and G is reflexible,
2 otherwise.

3. Topologies and Graph Operations

In this section, we will compute the number τ̄(G } H) and ~(G } H) when
τ̄(G), τ̄(H), ~(G), and ~(H) are known, where } is either the disjoint union, the
Cartesian product or the amalgamation of graphs.

The following lemma gives a computation formula for the graph that can be
expressed by a disjoint union of some connected graphs.

Lemma 3.1. For a natural number ℓ, let G1, . . . , Gℓ be pairwise non-isomorphic ℓ
connected graphs and let n1, . . . , nℓ be ℓ natural numbers. Let G = n1G1 ∪ n2G2 ∪
· · · ∪ nℓGℓ. Then

τ̄(G) =
ℓ∏

i=1

τ̄(Gi)
ni and ~(G) =

ℓ∏
i=1

~(niGi) =
ℓ∏

i=1

(
~(Gi) + ni − 1

ni

)
,

where mH stands for the disjoint union of m copies of H.
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Proof. LetH1 andH2 be two graphs having disjoint vertex sets. Then τ̄(H1∪H2) =

τ̄(H1)τ̄(H2). It implies that τ̄(G) =
∏ℓ

i=1 τ̄(Gi)
ni . To prove the second statement,

we firstly show that ~(nH) =

(
~(H) + n− 1

n

)
. Let us identify a topology T ∈

Top (nH) with a finite sequence (T1,T2, . . . ,Tn) of length n with Ti ∈ Top (H) for
each i = 1, 2, . . . , n. Then two topologies (T1,T2, . . . ,Tn) and (T′

1,T
′
2, . . . ,T

′
n) are

equivalent if and only if there exists a bijection σ : Nn → Nn such that Ti and T′
σ(i)

are equivalent for each i = 1, 2, . . . , n. It implies that the number ~(nH) is equal
to the number of selections with repetitions of n objects chosen from ~(H) types of

objects, i.e., ~(nH) =

(
~(H) + n− 1

n

)
. For given two non-isomorphic graphs H1

and H2, it is not hard to show that ~(H1 ∪H2) = ~(H1)~(H2). This completes the
proof.

For two graphs G and H, the Cartesian product G2H is a graph such that
V (G2H) = V (G)× V (H) and two vertices (u1, v1) and (u2, v2) are adjacent if and
only if (u1 = u2 and v1v2 ∈ E(H)) or (u1u2 ∈ V (G) and v1 = v2). We aim to
compute τ̄(G2H) and ~(G2H).

Lemma 3.2. For any odd number n ≥ 3, τ̄(K22Cn) = 0.

Proof. If n is greater than or equal to 5, then it is not hard to show that there is
no transitive digraph whose underlying graph is Cn. Since K22Cn has an induced
subgraph isomorphic to Cn, τ̄(K22Cn) = 0 by Lemma 2.6.

Let n = 3 and let D be a digraph whose underlying graph is K22C3.
Let V (K2) = {u1, u2} and V (C3) = {v1, v2, v3}. One can check that there
are ui ∈ V (K2) and vj , vk ∈ V (C3) such that both ((ui, vj), (u3−i, vj)) and
((u3−i, vj), (u3−i, vk)) are directed edges in D. Since ((ui, vj) and (u3−i, vk)) are
not adjacent in K22C3, D is not transitive. Hence τ̄(K22C3) = 0.

Note that for two graphs G and H, G2H is bipartite if and only if both G and
H are bipartite. Furthermore, for bipartite graph G2H, one can check that G2H
is reflexible if and only if either G or H is reflexible.

Theorem 3.3. For any two connected graphs G and H,

τ̄(G2H) =

{
0 if G or H is not bipartite,
2 otherwise,

and

~(G2H) =

 0 if G or H is not bipartite,
1 if G and H are bipartite and G or H is reflexible,
2 otherwise.
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Proof. Assume that G or H is not bipartite. Then G2H is not bipartite and
G2H contains an induced subgraph isomorphic to K22Cn for some odd n. By
Lemmas 2.6 and Lemma 3.2, we have τ̄(G2H) = 0.

Suppose G and H are bipartite. Now G2H is bipartite and hence τ̄(G2H) =
2 by Theorem 2.7. Furthermore, ~(G2H) is 1 if either G or H is reflexible; 2
otherwise.

Let v be a cut vertex of a graph G. Then v is a sink or a source in every
transitive digraph having G as its underlying graph. Let G and H be two graphs.
For two vertices u ∈ V (G) and v ∈ V (H), a graph G∗u=vH is obtained from G and
H by identifying the vertices u and v. We call it the amalgamation of G and H along
the vertices u and v. We note that u (or v) is a cut vertex of G∗u=vH. For a graph
G and a vertex u ∈ V (G), let τ̄si(G, u) (τ̄so(G, u), respectively) be the number of
topologies having G as its underlying graph and v as a sink(source, respectively) in
the digraphs corresponding them. Similarly, we define ~si(G, u) and ~so(G, u). For
any transitive digraph D, if we change direction of every directed edge in D, then
the resulting digraph is also a transitive digraph. Moreover the correspondence is
bijective and hence τ̄si(G, u) = τ̄so(G, u) and ~si(G, u) = ~so(G, u). Note that for
any preorder R, the digraph obtained by changing direction of every edge in D(R)
corresponds to the topology composed of all closed sets in T(R).

Now the following theorem comes from the fact that v is a cut vertex ofG∗u=vH.

Theorem 3.4. Let G and H be two graphs.

(a) If v is a cut vertex of G, then v is a sink or a source in every transitive digraph
having G as its underlying graph and hence τ̄(G) = 2τ̄si(G, v). Moreover, if
v is the unique cut vertex, then ~(G) = 2~si(G, v).

(b) If u ∈ V (G) and v ∈ V (H), then τ̄(G ∗u=v H) = 2τ̄si(G, u)τ̄si(H, v). More-
over, if neither G nor H has cut vertex, then

~(G ∗u=v H) =

{
(~si(G, u) + 1) ~si(G, u) if u ≃f v,

2~si(G, u) ~si(H, v) otherwise,

where u ≃f v means that there exists a graph isomorphism f : G → H such
that f(u) = v.

From Proposion 2.4 and Lemma 3.1, we can see that the computation of τ̄(n)
and ~(n) can be completed if we can compute τ̄(G) and ~(G) for any connected
graph with n vertices. In the next section, we compute τ̄(G) and ~(G) for some
special classes of connected graphs.

4. Topologies Having a Fixed Underlying Graph

In this section, we compute τ̄(G) and ~(G) when G is a cycle, a wheel or a
complete graph.
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Figure 1: C3 and four non-isomorphic transitive digraphs whose underlying
graph is C3.

First, we aim to compute τ̄(Cn) and ~(Cn) for a natural number n ≥ 3. Notice
that C3 is the complete graph K3 on three vertices. There are four non-isomorphic
transitive digraphs whose underlying graph is K3 as illustrated in Figure 1 and the
following is the list of all representatives of them; D1 = {1|2|3}, D2 = {1|2, 3},
D3 = {1, 2|3}, D4 = {1, 2, 3}, where D3 = {1, 2|3} stands for the digraph with
vertex set {1, 2, 3} and arc set {12, 21, 13, 23}. Hence ~(C3) = 4. For convenience,
let αi be the number of digraphs that are isomorphic to Di, Then α1 = 3! = 6,

α2 = α3 =
3!

2!
= 3, α4 =

3!

3!
= 1. Hence, τ̄(C3) =

∑4
i=1 αi = 6 + 6 + 1 = 13. Since

there is no transitive digraphs whose underlying graph is Cn when n is odd greater
than 3, τ̄(Cn) = 0 = ~(Cn) if n is odd and n ≥ 5.

Now, the following corollary comes from Lemma 2.6, Theorem 2.7 and the fact
that every cycle of even length is reflexible.

Corollary 4.1. For a natural number n ≥ 3,

τ̄(Cn) =

 13 if n = 3,
0 if n is odd and n ≥ 5,
2 otherwise,

and

~(Cn) =

 4 if n = 3,
0 if n is odd and n ≥ 5,
1 otherwise.
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Figure 2: W7 and two non-isomorphic transitive digraphs whose underlying
graph is W7.

Next, we will compute τ̄(G) when G is the wheel graph. For a natural number
n ≥ 4, the wheelWn is a graph with n vertices which contains a cycle Cn−1 as an in-
duced subgraph, and every vertex in the cycle is adjacent to one other vertex. Note
thatW4 is the complete graph K4 on four vertices. A wheel graphW7 and two non-
isomorphic transitive digraphs whose underlying graph is W7 are depicted in Fig-
ure 2. There are eight non-isomorphic transitive digraphs whose underlying graph
is K4 and the following is the list of all representatives of them; D1 = {1|2|3|4},
D2 = {1|2|3, 4}, D3 = {1|2, 3|4}, D4 = {1, 2|3|4}, D5 = {1|2, 3, 4}, D6 = {1, 2, 3|4},
D7 = {1, 2|3, 4}, and D8 = {1, 2, 3, 4}. For convenience, let βi be the number of
digraphs that are isomorphic to Di. Then β1 = 24, β2 = β3 = β4 = 12, β5 = β6 = 4,
β7 = 6, and β8 = 1. Hence τ̄(K4) =

∑8
i=1 βi = 24 + 36 + 8 + 6 + 1 = 75. Now, the

following comes from Lemma 2.6 and a simple computation.

Theorem 4.2. For a natural number n ≥ 4, let Wn be the wheel graph. Then we
have

τ̄(Wn) =


4 if n is odd and n ≥ 7,
0 if n is even and n ≥ 6,
75 if n = 4,
8 if n = 5,

and

~(Wn) =


2 n is odd and n ≥ 7,
0 n is even and n ≥ 6,
8 if n = 4,
4 if n = 5.

Finally, we will compute τ̄(Kn) and ~(Kn) for the complete graph Kn on n
vertices. Let S(n, k) be the number of ways of partitions of Nn into exactly k
nonempty parts which is known as the Stirling number of the second kind [12].

Theorem 4.3. For a natural number n, we have

τ̄(Kn) =
n∑

k=1

Surj(n, k) =
n∑

k=1

S(n, k)k! and ~(Kn) = 2n−1,
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where Surj(n, k) is the number of surjections from Nn to Nk.

Proof. Let R be a preorder on Nn whose underlying graph is the complete graph
Kn. Then (i, j) ∈ R or (j, i) ∈ R for any two distinct elements i and j in Nn.
We define another relation E(R) on Nn by (x, y) in E(R) if and only if both (x, y)

and (y, x) are in R. Then E(R) is an equivalence relation on Nn. Let R̃ be a

relation on Nn/E(R) defined by ([x], [y]) ∈ R̃ if and only if (x, y) ∈ R. By the

transitivity of R, R̃ is a well defined total order on Nn/E(R). For convenience,

let Nn/E(R) = {[i1], [i2], . . . , [ik]} and ([is], [it]) ∈ R̃ if and only if s ≤ t. We
define fR : Nn → Nk by fR(i) = s if (i, is) ∈ E(R). Then fR is a surjection.
Conversely, for a given surjection f : Nn → Nk we define a relation Rf on Nn

by (i, j) ∈ Rf if and only if f(i) ≤ f(j). Then Rf is a preorder on Nn whose
underlying graph is Kn. Since RfR = R and fRf

= f , the correspondence is
one-to-one and hence τ̄(Kn) =

∑n
k=1 Surj(n, k). Since Surj(n, k) = S(n, k)k!,

τ̄(Kn) =
∑n

k=1 Surj(n, k) =
∑n

k=1 S(n, k)k!.
For a proof of the second equation, let f : Nn → Nh and g : Nn → Nk be

two surjections. Then T(Rf ) and T(Rr) are equivalent if and only if h = k and
|f−1(i)| = |g−1(i)| for all i = 1, 2, . . . , h = k (by Lemma 2.3). For a k-tuple
(n1, n2, . . . , nk) of natural numbers such that n = n1 + n2 + · · · + nk, we define a
surjection φ : Nn → Nk such that φ−1(1) = {1, 2, · · · , n1} and

φ−1(i) =

{(
i−1∑
t=1

nt

)
+ 1,

(
i−1∑
t=1

nt

)
+ 2, . . . ,

(
i−1∑
t=1

nt

)
+ ni − 1,

(
i∑

t=1

nt

)}
for each i = 2, . . . , k. Then the topology corresponding to φ is a representative
of the equivalence class of topologies corresponding to all surjections f satisfying
|f−1(i)| = ni for all i = 1, 2, . . . , k. It is clear that two different k-tuples represent
two different equivalence topologies. So, the number of equivalence classes of topolo-
gies corresponding to the set of all surjections from Nn → Nk is equal to the number
of ways to choose k − 1 positions among n − 1 positions between the n numbers

1, 2, . . . , n. Hence we have ~(Kn) =
n∑

k=1

(
n− 1
k − 1

)
=

n−1∑
k=0

(
n− 1
k

)
= 2n−1.

Remark 4.4. We already know that τ̄(1) = 1, ~(1) = 1, τ̄(2) = 4 and ~(2) = 3. In
order to compute τ̄(3) and ~(3), we list all representatives of isomorphism classes of
graphs on three vertices as follows; the null graphN3,H, the path P2 of length 2, and
the complete graph K3, where H is the disjoint union of K2 and the null graph N1.
It is not hard to show that τ̄(N3) = 1, ~(N3) = 1, τ̄(H) = 3, ~(H) = 2, τ̄(P2) = 2,
~(P2) = 2, τ̄(K3) = 13, and ~(K3) = 4. Now, it comes from Proposition 2.4 that
τ̄(3) = 1 + 3× 3 + 2× 3 + 13 = 29 and ~(3) = 1 + 2 + 2 + 4 = 9. Similarly, we can
see that τ̄(4) = 355 and ~(4) = 33.
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