KYUNGPOOK Math. J. 54(2014), 587-593 http://dx.doi.org/10.5666/KMJ.2014.54.4.587

The *-Nagata Ring of almost Prüfer *-multiplication Domains

JUNG WOOK LIM Department of Mathematics, Kyungpook National University, Daegu, 702-701, Republic of Korea e-mail: jwlim@knu.ac.kr

ABSTRACT. Let D be an integral domain with quotient field K, \overline{D} denote the integral closure of D in K and * be a star-operation on D. In this paper, we study the *-Nagata ring of AP*MDs. More precisely, we show that D is an AP*MD and $D[X] \subseteq \overline{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD.

1. Introduction

For the sake of clarity, we first review some definitions and notation. Let D be an integral domain with quotient field K and $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. A star-operation on D is a mapping $I \mapsto I_*$ from $\mathbf{F}(D)$ into itself which satisfies the following three conditions for all $0 \neq a \in K$ and all $I, J \in \mathbf{F}(D)$:

- (1) $(aD)_* = aD$ and $(aI)_* = aI_*;$
- (2) $I \subseteq I_*$, and if $I \subseteq J$, then $I_* \subseteq J_*$; and
- (3) $(I_*)_* = I_*.$

An $I \in \mathbf{F}(D)$ is said to be a *-*ideal* if $I = I_*$. A *-*ideal* of D is called a *maximal* *-*ideal* of D if it is maximal among proper integral *-*ideals* of D. Given any star-operation * on D, we can construct a new star-operation *_f as follows: For all $I \in \mathbf{F}(D)$, the *_f-operation is defined by $I_{*_f} = \bigcup \{J_* \mid J \text{ is a nonzero finitely} generated fractional subideal of <math>I\}$. A star-operation * on D is said to be of *finite* character (or finite type) if $I_* = I_{*_f}$ for each $I \in \mathbf{F}(D)$. It is easy to see that the *_f-operation is of finite character. Let *' be a finite character star-operation on D. It is well known that if D is not a field, then each proper integral *'-ideal of D is

Key words and phrases: *-Nagata ring, almost Prüfer *-multiplication domain, Prüfer *-multiplication domain.

Received January 2, 2014; accepted April 9, 2014.

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13F05, 13G05.

contained in a maximal *'-ideal of D, and hence a maximal *'-ideal of D always exists. An $I \in \mathbf{F}(D)$ is said to be $*_f$ -invertible if $(II^{-1})_{*_f} = D$, or equivalently, $II^{-1} \not\subseteq M$ for any maximal $*_f$ -ideal M of D. If $*_1$ and $*_2$ are star-operations on D, then we mean by $*_1 \leq *_2$ that $I_{*_1} \subseteq I_{*_2}$ for all $I \in \mathbf{F}(D)$. Clearly, if $*_1$ and $*_2$ are star-operations of finite character with $*_1 \leq *_2$, then a $*_1$ -invertible ideal is $*_2$ -invertible.

The simplest example of a star-operation is the *d*-operation. Other well-known examples are the *v*- and *t*-operations. The *d*-operation is just the identity map on $\mathbf{F}(D)$, *i.e.*, $I_d = I$ for all $I \in \mathbf{F}(D)$. The *v*-operation is defined by $I_v = (I^{-1})^{-1}$, where $I^{-1} := \{a \in K \mid aI \subseteq D\}$, and the *t*-operation is defined by $I_t = \bigcup \{J_v \mid J \text{ is a nonzero finitely generated fractional subideal of } I\}$, *i.e.*, $t = v_f$. Clearly, if an $I \in \mathbf{F}(D)$ is finitely generated, then $I_v = I_t$. It is also well known that $d \leq * \leq v$ for all star-operations *. For more on star-operations, the readers can refer to [8, Section 32].

Let T(D) be the abelian group of t-invertible fractional t-ideals of an integral domain D under the t-multiplication $I * J = (IJ)_t$, and let Prin(D) be the subgroup of T(D) of principal fractional ideals of D. Then the t-class group of D is the quotient group $Cl_t(D) := T(D)/Prin(D)$. Let Inv(D) be the group of invertible fractional ideals of D. Clearly, Inv(D) is a subgroup of T(D) containing Prin(D). The *Picard group* is the group Pic(D) := Inv(D)/Prin(D), and Pic(D) is obviously a subgroup of $Cl_t(D)$.

Let D be an integral domain with quotient field K, and \overline{D} be the integral closure of D in K. In [1, Definition 4.1], Anderson and Zafrullah first introduced the notions of almost Prüfer domains and almost Bézout domains. They defined Dto be an almost Prüfer domain (AP-domain) (respectively, almost Bézout domain (AB-domain)) if for any $0 \neq a, b \in D$, there exists a positive integer n = n(a, b)such that (a^n, b^n) is invertible (respectively, principal). It was shown that D is an AP-domain with torsion (t) class group if and only if D is an AB-domain [1, Lemma 4.4]; and D is an AP-domain (respectively, AB-domain) if and only if \overline{D} is a Prüfer domain (respectively, Prüfer domain with torsion Picard group) and $D \subseteq \overline{D}$ is a root extension [1, Corollary 4.8]. In [1, Definition 5.1], the authors also defined D to be an almost valuation domain (AV-domain) if for any $0 \neq a, b \in D$, there exists an integer $n = n(a, b) \ge 1$ such that $a^n \mid b^n$ or $b^n \mid a^n$. Later, Li gave the notion of almost Prüfer v-multiplication domains which is the t-operation analogue of AP-domains. She defined D to be an almost Prüfer v-multiplication domain (APvMD) if for any $0 \neq a, b \in D$, there exists a positive integer n = n(a, b)such that (a^n, b^n) is t-invertible. It was shown in [1, Theorem 5.8] (respectively, [14, Theorem 2.3]) that D is an AP-domain (respectively, APvMD) if and only if D_M is an AV-domain for all maximal ideals (respectively, maximal t-ideals) M of D. Following [13, Definition 2.1], D is an almost Prüfer *-multiplication domain (AP*MD) if for each $0 \neq a, b \in D$, there exists an integer $n = n(a, b) \geq 1$ such that (a^n, b^n) is $*_f$ -invertible, where * is a star-operation on D. It was shown in [13, Theorem 2.4] that D is an AP*MD if and only if D_M is an AV-domain for all maximal $*_f$ -ideals M of D. Also, it is clear that if $*_1$ and $*_2$ are star-operations with $*_1 \leq *_2$, then an AP $*_1$ MD is an AP $*_2$ MD; so for any star-operation *, an AP-domain is an AP*MD, and an AP*MD is an APvMD.

In this paper, we study the *-Nagata ring of AP*MDs, where * is a staroperation. More precisely, we show that D is an AP*MD and $D[X] \subseteq \overline{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD. (Preliminaries related to P*MDs will be reviewed before Lemma 5.) As a corollary, we recover a well-known fact that D is a P*MD if and only if $D[X]_{N_*}$ is a Bézout domain, if and only if $D[X]_{N_*}$ is a Prüfer domain.

2. Main Results

Throughout this section, D always denotes an integral domain with quotient field K, \overline{D} is the integral closure of D in K and D[X] means the polynomial ring over D. For a polynomial $g \in D[X]$, c(g) stands for the *content ideal* of D, *i.e.*, the ideal of D generated by the coefficients of g. Let * be a star-operation on Dand set $N_* := \{g \in D[X] \mid c(g)_* = D\}$. If we need to make the integral domain D explicit, then we use $N_*(D)$ instead of N_* . Clearly, $N_* = N_{*f}$. Also, note that $N_* = D[X] \setminus \bigcup MD[X]$, where M runs over all maximal $*_f$ -ideals of D [11, Proposition 2.1(1)]; so N_* is a saturated multiplicative subset of D[X]. We call the quotient ring $D[X]_{N_*}$ the *-Nagata ring of D. Recently, the authors in [3] studied the t-Nagata ring of APvMDs. In fact, they showed that D is an APvMD and $D[X] \subseteq \overline{D}[X]$ is a root extension if and only if $D[X]_{N_v}$ is an AP-domain, if and only if $D[X]_{N_v}$ is an AB-domain [3, Theorem 2.5]. (Recall that an extension $R \subseteq T$ of integral domains is a root extension if for each $z \in T$, $z^n \in R$ for some integer $n = n(z) \ge 1$.)

In order to study the *-Nagata ring of AP*MDs, we need the following lemma.

Lemma 1. The following assertions hold.

- (1) If D is an AV-domain and F is a subfield of K, then $D \cap F$ is an AV-domain.
- (2) Let * be a star-operation on D. Then D is an AP*MD if and only if D_M is an AV-domain for all maximal $*_f$ -ideals M of D.

Proof. (1) Let $0 \neq x \in F$. Then $x = \frac{b}{a}$ for some $0 \neq a, b \in D$. Since D is an AV-domain, we can find a suitable integer $n = n(a, b) \ge 1$ such that $a^n \mid b^n$ or $b^n \mid a^n$; so $x^n \in D$ or $x^{-n} \in D$. Hence $x^n \in D \cap F$ or $x^{-n} \in D \cap F$. Thus $D \cap F$ is an AV-domain.

(2) This appears in [13, Theorem 2.4].

Recall that D is root closed if for $a \in K$, $a^n \in D$ for some positive integer n implies that $a \in D$.

Lemma 2. Let S be a (not necessarily saturated) multiplicative subset of D. Then the following assertions hold.

- (1) If $D \subseteq \overline{D}$ is a root extension, then $D_S \subseteq \overline{D}_S$ is a root extension.
- (2) If D is root closed, then D_S is root closed.

Proof. (1) Let $\frac{e}{s} \in \overline{D}_S$, where $e \in \overline{D}$ and $s \in S$. Since $D \subseteq \overline{D}$ is a root extension, $e^n \in D$ for some integer $n = n(e) \ge 1$; so $(\frac{e}{s})^n \in D_S$. Thus $D_S \subseteq \overline{D}_S$ is a root extension.

(2) Let $a \in K$ such that $a^n \in D_S$ for some integer $n \ge 1$. Then $sa^n \in D$ for some $s \in S$; so $(sa)^n \in D$. Since D is root closed, $sa \in D$, and hence $a \in D_S$. Thus D_S is root closed.

Now, we give the main result in this article.

Theorem 3. Let * be a star-operation on D and let $N_* := \{g \in D[X] \mid c(g)_* = D\}$. Then the following statements are equivalent.

- (1) D is an AP*MD and $D[X] \subseteq \overline{D}[X]$ is a root extension.
- (2) $D[X]_{N_*}$ is an AB-domain.
- (3) $D[X]_{N_*}$ is an AP-domain.

Proof. (1) ⇒ (2) Assume that *D* is an AP*MD, and let *Q* be a maximal ideal of $D[X]_{N_*}$. Then $Q = MD[X]_{N_*}$ for some maximal *_f-ideal *M* of *D* [11, Proposition 2.1(2)]. Note that D_M is an AV-domain by Lemma 1(2); so D_M is an APvMD and MD_M is a maximal *t*-ideal of D_M [1, Proof of Theorem 5.6]. Also, note that $\overline{D_M[X]} = \overline{D}_{D\setminus M}[X]$ (cf. [7, Theorem 12.10(2)]); so by Lemma 2(1), $D_M[X] \subseteq \overline{D}_M[X]$ is a root extension, because $D[X] \subseteq \overline{D}[X]$ is a root extension. Therefore $D_M[X]$ is an APvMD [14, Theorem 3.13]. Since $MD_M[X]$ is a maximal *t*-ideal of $D_M[X]$ is a naximal *t*-ideal of $D_M[X]$ is an AV-domain by Lemma 1(2). Note that $(D[X]_{N_*})_Q = (D[X]_{N_*})_{MD[X]_{N_*}} = D[X]_{MD[X]} = D_M[X]_{MD_M[X]}$ [2, Lemma 2]; so $(D[X]_{N_*})_Q$ is an AV-domain. Hence $D[X]_{N_*}$ is an AP-domain by Lemma 1(2). Note that Pic $(D[X]_{N_*}) = 0$ [11, Theorem 2.14]. Thus $D[X]_{N_*}$ is an AB-domain [1, Lemma 4.4].

 $(2) \Rightarrow (3)$ This implication is obvious.

 $(3) \Rightarrow (1)$ Let M be a maximal $*_f$ -ideal of D. Then $MD[X]_{N_*}$ is a maximal ideal of $D[X]_{N_*}$ [11, Proposition 2.1(2)]. Since $D[X]_{N_*}$ is an AP-domain, $(D[X]_{N_*})_{MD[X]_{N_*}}$ is an AV-domain by Lemma 1(2). Note that $(D[X]_{N_*})_{MD[X]_{N_*}} = D[X]_{MD[X]} = D_M[X]_{N_d(D_M)}$ [2, Lemma 2]; so $D_M[X]_{N_d(D_M)}$ is an AV-domain. Since $D_M = D_M[X]_{N_d(D_M)} \cap K$ [11, Proposition 2.8(1)], D_M is an AV-domain by Lemma 1(1). Thus by Lemma 1(2), D is an AP-MD.

Let $N_v := \{f \in D[X] \mid c(f)_v = D\}$. Then $N_* \subseteq N_v$; so $D[X]_{N_v} = (D[X]_{N_*})_{N_v}$. Since $D[X]_{N_*}$ is an AP-domain, $D[X]_{N_*}$ is an APvMD; so $D[X]_{N_v}$ is also an APvMD [3, Lemma 2.4]. Thus $D[X] \subseteq \overline{D}[X]$ is a root extension [3, Theorem 2.5]. By applying * = d to Theorem 3, we obtain

Corollary 4. The following assertions are equivalent.

- (1) D is an AP-domain and $D[X] \subseteq \overline{D}[X]$ is a root extension.
- (2) $D[X]_{N_d}$ is an AB-domain.
- (3) $D[X]_{N_d}$ is an AP-domain.

Let * be a star-operation on D. Recall that D is a Pr
üfer *-multiplication domain (P*MD) if every nonzero finitely generated ideal of D is $*_f$ -invertible, or equivalently, D_M is a valuation domain for all maximal $*_f$ -ideals M of D [10, Theorem 1.1]. When * = d or t, it was shown in [1, Theorem 4.7] (respectively, [14, Theorem 2.4]) that D is a Prüfer domain (respectively, PvMD) if and only if D is a nintegrally closed AP-domain (respectively, APvMD), if and only if D is a root closed AP-domain (respectively, APvMD). We next extend these results to P*MDs for any star-operation *.

Lemma 5. Let * be a star-operation on D. Then the following assertions are equivalent.

- (1) D is a P*MD.
- (2) D is an integrally closed AP*MD.
- (3) D is a root closed AP*MD.

Proof. (1) \Rightarrow (2) Clearly, a P*MD is an AP*MD. Thus this implication follows directly from a well-known fact that a P*MD is integrally closed [10, Theorem 1.1].

 $(2) \Rightarrow (3)$ It suffices to note that an integrally closed domain is always root closed.

(3) \Rightarrow (1) Assume that D is a root closed AP*MD, and let M be a maximal $*_f$ -ideal of D. Then D_M is an AV-domain by Lemma 1(2). Let a and b be nonzero elements of D_M . Then there exists a positive integer n = n(a, b) such that $a^n \mid b^n$ or $b^n \mid a^n$. Hence $(\frac{b}{a})^n \in D_M$ or $(\frac{a}{b})^n \in D_M$. Note that D_M is root closed by Lemma 2(2); so $\frac{b}{a} \in D_M$ or $\frac{a}{b} \in D_M$, which indicates that D_M is a valuation domain. Thus D is a P*MD [10, Theorem 1.1].

Recall that D is a *Bézout domain* if every finitely generated ideal of D is principal. It is well known that D is a Bézout domain if and only if D is a Prüfer domain with trivial Picard group.

Corollary 6. ([6, Theorem 3.1]) Let * be a star-operation on D. Then the following statements are equivalent.

- (1) D is a P*MD.
- (2) $D[X]_{N_*}$ is a Bézout domain.

(3) $D[X]_{N_*}$ is a Prüfer domain.

Proof. Note that by suitable combinations of [12, Theorems 51 and 52], [7, Corollary 12.11(2)] and [11, Proposition 2.8(1)]), it is easy to see that D is integrally closed if and only if $D[X]_{N_*}$ is integrally closed.

 $(1) \Rightarrow (2)$ If D is a P*MD, then by Lemma 5, D is an integrally closed AP*MD; so $D[X]_{N_*}$ is an integrally closed AP-domain by Theorem 3. Hence $D[X]_{N_*}$ is a Prüfer domain [1, Theorem 4.7] (or Lemma 5). Note that $\operatorname{Pic}(D[X]_{N_*}) = 0$ [11, Theorem 2.14]. Thus $D[X]_{N_*}$ is a Bézout domain.

 $(2) \Rightarrow (3)$ This implication is clear.

 $(3) \Rightarrow (1)$ Assume that $D[X]_{N_*}$ is a Prüfer domain. Then $D[X]_{N_*}$ is an integrally closed AP-domain [1, Theorem 4.7] (or Lemma 5). Hence D is an integrally closed AP*MD by Theorem 3. Thus the result follows from Lemma 5.

A particular case of Corollary 6 is when * = d or t.

Corollary 7. ([2, Theorem 4] (respectively, [11, Theorem 3.7])) The following assertions are equivalent.

- (1) D is a Prüfer domain (respectively, PvMD).
- (2) $D[X]_{N_d}$ (respectively, $D[X]_{N_v}$) is a Bézout domain.
- (3) $D[X]_{N_d}$ (respectively, $D[X]_{N_v}$) is a Prüfer domain.

Let * be a star-operation on D. Note that the *-Nagata ring $D[X]_{N_*}$ is a quotient ring of the polynomial ring D[X]. We end this article by mentioning a remark for the polynomial extensions of AP*MDs.

Remark 8. (1) Let * be a star-operation on D[X]. Then the mapping $\overline{*} : \mathbf{F}(D) \to \mathbf{F}(D)$ defined by $I_{\overline{*}} = (ID[X])_* \cap D$ for all $I \in \mathbf{F}(D)$ is a star-operation on D [15, Proposition 2.1]. It is well known that if * denotes the *d*-operation (respectively, *t*-operation, *v*-operation) on D[X], then $\overline{*}$ is the *d*-operation (respectively, *t*-operation, *v*-operation) on D[X], then $\overline{*}$ is the *d*-operation 4.3].

(2) If D is an APvMD and $D[X] \subseteq \overline{D}[X]$ is a root extension, then D[X] is also an APvMD [14, Theorem 3.13]. (Note that the condition " $D[X] \subseteq \overline{D}[X]$ is a root extension" is essential [14, Remark 3.12(3)].)

(3) Let * and $\overline{*}$ be star-operations as in (1). By (2), it might be natural to ask whether AP $\overline{*}$ MD properties of the base ring can be ascended to AP*MD properties of the polynomial extension (under some assumptions if needed), *i.e.*, if D is an AP $\overline{*}$ MD with some additional conditions, then D[X] is an AP*MD. However the answer is not generally affirmative. For example, the polynomial ring over an APdomain is not generally an AP-domain. In fact, D[X] is an AP-domain if and only if D is a field (cf. [4, Theorem 2.15]).

Acknowledgments. The author would like to thank the referee for his/her several valuable suggestions.

References

- D. D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra, 142(1991), 285-309.
- J. T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math., 21(1969), 558-563.
- [3] G. W. Chang, H. Kim, and J. W. Lim, Numerical semigroup rings and almost Prüfer v-multiplication domains, Comm. Algebra, 40(2012), 2385-2399.
- [4] G. W. Chang and J. W. Lim, Almost Prüfer v-multiplication domains and related domains of the form D + D_S[Γ^{*}], Comm. Algebra, 41(2013), 2650-2664.
- [5] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra, 26(1998), 1017-1039.
- [6] M. Fontana, P. Jara, and E. Santos, Prüfer *-multiplication domains and semistar operations, J. Algebra Appl., 2(2003), 21-50.
- [7] R. Gilmer, Commutative Semigroup Rings, The Univ. of Chicago Press, Chicago and London, 1984.
- [8] R. Gilmer, *Multiplicative Ideal Theory*, Queen's Papers in Pure and Appl. Math., vol. 90, Queen's University, Kingston, Ontario, Canada, 1992.
- J. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra, 18(1980), 37-44.
- [10] E. G. Houston, S. B. Malik, and J. L. Mott, *Characterizations of *-multiplication domains*, Canad. Math. Bull., 27(1984), 48-52.
- [11] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra, **123**(1989), 151-170.
- [12] I. Kaplansky, *Commutative Rings*, Polygonal Publishing House, Washington, New Jersey, 1994.
- [13] Q. Li, Almost Prüfer *-multiplication domains, Int. J. Algebra, 4(2010), 517-523.
- [14] Q. Li, On almost Pr
 üfer v-multiplication domains, Algebra Colloq., 19(2012), 493-500.
- [15] A. Mimouni, Note on star operations over polynomial rings, Comm. Algebra, 36(2008), 4249-4256.