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Abstract. In this paper, we introduce two new types of irresolute functions namely

completely D-irresolute functions and weakly D-irresolute functions.We obtain their char-

acterizations and their basic properties.

1. Introduction

Functions and of course irresolute functions give new path towards research.
In 1972, S. G. Crossely and S. K. Hildebrand [2] introduced the notion of irreso-
luteness. Many different forms of irresolute functions have been introduced over
the years. Various interesting problems arise when one considers irresoluteness. Its
importance is significant in various of mathematics and related sciences. Recently,
as generalization of closed sets, the notion of D-closed sets were introduced and
this notion was further studied by Dass et al [1]. In this paper, we will continue
the study of related irresolute functions with D-open sets. We introduce and char-
acterize the concepts of completely D-irresolute functions and weakly D-irresolute
functions.

2. Preliminaries

Throughout this paper, spaces means topological spaces on which no separation
axioms are assumed unless otherwise metioned and
f : (X, τ) → (Y, σ) (or simply f : X → Y ) denotes a function f of a space (X, τ)
into a space (Y, σ). Let A be a subset of a space X. The closure, the interior and
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the complement of A are denoted by cl(A), Int(A) and Ac, respectively.

Definition 2.1. Let (X, τ) be a topological space. A subset A of the space X is
said to be

1. pre-open [12] if A ⊆ Int(cl(A)) and pre-closed if cl(Int(A)) ⊆ A.

2. semi-open [9] if A ⊆ cl(Int(A)) and semi-closed if Int(cl(A)) ⊆ A.

3. regular open [16] if A = Int(cl(A)) and regular closed if A = cl(Int(A)).

Definition 2.2.([5]) Let (X, τ) be a topological space and A ⊆ X is said to be

1. The pre-interior of A, denoted by pInt(A), is the union of all preopen subsets
of A.

2. The pre-closure of A, denoted by Pcl(A), is the intersection of all preclosed
sets containing A.

Definition 2.3. Let (X, τ) be a topological space. A subset A ⊆ X is said to be

1. ω−closed [14] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X.

2. D−closed [1] if Pcl(A) ⊆ Int(U) whenever A ⊆ U and U is ω−-open in X.

The complements of the above mentioned sets are called their respective open
sets.

Definition 2.4.([1]) Let (X, τ) be a topological space and A be a subset of (X, τ).
D − cl of A is the intersection of all D−closed sets containing A.

Lemma 2.5.([1]) If A is a D-closed set then D− cl(A) = A. Converse need not be
true.

Theorem 2.6.([1]) A subset A of X is regular open if and only if A is open and
D-closed.

Theorem 2.7.([14]) A set A is ω−open iff F ⊆ Int(A) whenever F is semi-closed
and F ⊆ A.

Theorem 2.8. Every closed set of (X, τ) is D-closed.

Proof. Let A be a closed set. Then A is semi-closed. Let A ⊆ U and U is ω−open in
X. By theorem 2.7, A ⊆ Int(U). Hence cl(A) ⊆ Int(U). Thus Pcl(A) ⊆ cl(A) ⊆
Int(U). Hence A is D-closed 2

Remark 2.9. The converse of the above theorem need not be true as seen from
the following example

Example 2.10. Let X = {a, b, c} and τ = {φ, {a}, X}. Then the set A = {b} is
D-closed but not closed.
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Definition 2.11. A function f : (X, τ) → (Y, σ) is called strongly continuous [8] if
f−1(V ) is clopen in X for every subset V of Y .

3. Completely D-irresolute Functions

Definition 3.1. A function f : (X, τ) → (Y, σ) is called perfectly D-continuous if
f−1(V ) is clopen in X for every D-closed (resp.D-open) subset V of Y .

Example 3.2. Let X = {a, b, c} = Y with topologies τ = {φ, {a}, {c},
{a, b}, {a, c}, X} and σ = {φ, {c}, {a, b}, Y }. Then the identity function f :
(X, τ) → (Y, σ) is perfectly D-continuous.

Definition 3.3. A function f : (X, τ) → (Y, σ) is called D-irresolute if f−1(V ) is
D-closed (resp.D-open) in X for every D-closed (resp.D-open) subset V of Y .

Example 3.4. Let X = {a, b, c} = Y with topologies τ = {φ, {b}, X} and σ =
{φ, {a, b}, X}. Define f : (X, τ) → (Y, σ) by f(a) = c; f(b) = a; f(c) = b. Then the
function f is D-irresolute.

Definition 3.5. A function f : (X, τ) → (Y, σ) is called contra-D-irresolute if
f−1(V ) is D-closed in X for every D-open subset V of Y .

Example 3.6. Let X = {a, b, c} = Y with topologies τ = {φ, {c}, X} and σ =
{φ, {a, b}, Y }. Define f : (X, τ) → (Y, σ) by f(a) = b; f(b) = a; f(c) = c. Then the
function f is contra-D-irresolute.

Definition 3.7. A function f : (X, τ)→(Y, σ) is called completely D-irresolute if
f−1(V ) is regular open in X for every D-open subset V of Y .

Example 3.8. Let X = {a, b, c} = Y with topologies τ = {φ, {a}, {b, c},
X} and σ = {φ, {a}, {c}, {a, c}, Y }. Define f : (X, τ) → (Y, σ) by f(a) = a;
f(b) = f(c) = c. Then the function f is completely D-irresolute.

Theorem 3.9. Every strongly continuous function is perfectly D-continuous and
so completely D-irresolute.

Proof. Let V be a D-open subset of Y . Since f is strongly continuous, f−1(V )
is clopen in X. Hence f is perfectly D-continuous. Also by Theorem 2.6, f is
completely D-irresolute. 2

Remark 3.10. The converse of the above theorem need not be true as seen from
the following example.

Example 3.11. By example 3.2, f is perfectly D-continuous but not strongly
continuous. Observe that for the set V = {a, c}, f−1(V ) is not clopen in X.

Theorem 3.12. Every completely D-irresolute function is contra-D-irresolute.

Proof. Let V be a D-open subset of Y . By hypothesis, f−1(V ) is regular open in
X. Then by theorem 2.6, f−1(V ) is both open and D-closed in X. Hence f−1(V )
is D-closed in X and so f is contra D-irresolute. 2
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Remark 3.13. The converse of the above theorem need not be true as seen from
the following example.

Example 3.14. Let X = {a, b, c} = Y with topologies τ = {φ, {c}, {a, c},
X} and σ = {φ, {a}, {b, c}, Y }. Then the identity function f : (X, τ) → (Y, σ)
is contra-D-irresolute but not completely D-irresolute. Observe that for the D-open
set V = {a}, f−1(V ) = {a} is not regular open in X.

Theorem 3.15. Every perfectly D-continuous function is D-irresolute.

Proof. Let G be a D-closed subset of Y . Since f is perfectly D-continuous, f−1(G)
is clopen in X. By theorem 2.8, f−1(G) is D-closed in X. Hence f is D-irresolute.

2

Remark 3.16. The converse of the above theorem need not be true as seen from
the following example.

Example 3.17. Let X = {a, b, c} = Y with topologies τ = {φ, {c}, X} and σ =
{φ, {c}, {a, b}, Y }. Define f : (X, τ) → (Y, σ) by
f(a) = c; f(b) = a; f(c) = b. Then f is D-irresolute but not perfectly D-continuous.
Observe that for the D-closed set V = {c}, f−1(V ) = {a} is not clopen in X.

Theorem 3.18. Every perfectly D-continuous function is contra-D-irresolute.

Proof. Let V be a D-open subset of Y . Since f is perfectly D-continuous, f−1(V )
is clopen in X. By theorem 2.8, f−1(V ) is D-closed in X. Hence f is contra-D-
irresolute. 2

Remark 3.19. The converse of the above theorem need not be true as seen from
the following example.

Example 3.20. By example 3.17, f is contra-D-irresolute but not perfectly D-
continuous.

Theorem 3.21. Let f : (X, τ) → (Y, σ) be a function. Then the following state-
ments are equivalent:

(i) f is completely D-irresolute.

(ii) f−1(F ) is regular closed in X for every D-closed set F in Y .

Proof. (i) ⇒ (ii) Let F be any D-closed set of Y . Then F c is D-open in Y . By (i),
f−1(F c) = (f−1(F ))c is regular open in X. Hence f−1(F ) is regular closed in X.

Converse is similar. 2

Lemma 3.22.([10]) Let S be an open subset of a space (X, τ). Then the following
hold:

(i) If U is regular open in X then so is U ∩ S in the subspace (S, τs).

(ii) If B ⊆ S is regular open in (S, τs) then there exists regular open set U in
(X, τ) such that B = U ∩ S.
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Theorem 3.23. If f : (X, τ) → (Y, σ) is a completely D-irresolute function and A
is any open subset of X then the restriction f |A : A → Y is completely D-irresolute.

Proof. Let V be D-open subset of Y . By hypothesis, f−1(V ) is regular open in X.
Since A is open in X, it follows from the lemma 3.22 that (f |A)−1(V ) = A∩f−1(V )
which is regular open in A. Hence f |A is completely D-irresolute. 2

Theorem 3.24. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two functions.
Then the following hold:

(i) If f is completely D-irresolute and g is perfectly D-continuous then g ◦ f is
completely D-irresolute.

(ii) If f is completely D-irresolute and g is irresolute then g ◦ f is completely
D-irresolute.

(iii) If f is completely D-irresolute and g is strongly continuous then g ◦ f is
completely D-irresolute.

Proof. The proof of the theorem is easy and hence omitted. 2

Definition 3.25. A space X is said to be

(i) almost connected [4] if there does not exist disjoint regular open sets A and
B such that A ∪B = X.

(ii) D-connected if there does not exist disjoint D-open sets A and B such that
A ∪B = X.

Theorem 3.26. Let f : (X, τ) → (Y, σ) is completely D-irresolute surjective func-
tion and X is almost connected then Y is D-connected.

Proof. Suppose that Y is not D-connected. Then there exist disjoint D-open sets
A and B of Y such that A ∪ B = Y . Since f is completely D-irresolute surjective,
f−1(A) and f−1(B) are regular open sets in X. Moreover f−1(A) ∪ f−1(B) = X,
f−1(A) 6= Φ and f−1(B) 6= Φ. This shows that X is not almost connected. Which
is a contradiction.

Definition 3.27. A space X is said to be

(i) nearly compact [15] if every regular open cover of X has a finite subcover.

(ii) nearly Lindelof [6] if every regular open cover of X has a countable subcover.

(iii) nearly countably compact [7] if every regular open countable cover of X has
a finitesubcover.

(iv) D-compact if every D-open cover of X has a finite subcover.

(v) countably D-compact if every D-open countable cover of X has a finite sub-
cover.
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(vi) D-Lindelof if every D-open cover of X has a countable subcover.

Theorem 3.28. Let f : (X, τ) → (Y, σ) be a completely D-irresolute surjective
function. Then the following statements hold:

(i) If X is nearly compact then Y is D-compact.

(ii) If X is nearly Lindelof then Y is D-Lindelof.

(iii) If X is nearly countably compact, then Y is countably D-compact.

Proof. Let f : (X, τ) → (Y, σ) be a completely D-irresolute function of nearly
compact space X onto a space Y . Let {Uα : α ∈ ∆} be any D-open cover of
Y . Then {f−1(Uα) : α ∈ ∆} is a regular open cover of X. Since X is nearly
compact, there exists a finite subcover {f−1(Uαi

)/i = 1, 2, . . . , n} of X. It follows
that {Uαi/i = 1, 2, . . . , n} is a finite subcover of Y . Hence the space Y is D-compact.

The proof of other cases are similar. 2

Definition 3.29. A space X is said to be

(i) D-closed compact (resp. S-closed [17]) if every D -closed (resp. regular closed)
cover of X has a finite sub cover.

(ii) Countably D-closed compact (resp.countably S-closed compact [3]) if every
D-closed (resp. regular closed) countable cover of X has a finite subcover.

(iii) D-closed Lindelof (resp. S-Lindelof [11]) if every D-closed (resp. regular
closed) cover of X has a countable subcover.

Theorem 3.30. Let f : (X, τ) → (Y, σ) be a completely D-irresolute surjective
function. Then the following statements hold:

(i) If X is S-closed then Y is D-closed compact.

(ii) If X is S-Lindelof then Y is D-closed Lindelof.

(iii) If X is countably S-closed compact then Y is countably D-closed compact.

Proof. Let f : (X, τ) → (Y, σ) be a completely D-irresolute surjective function.
Let {Uα : α ∈ ∆} be any D-closed cover of Y . Then {f−1(Uα) : α ∈ ∆} is
a regular closed cover of X. Since X is S-closed, there exists a finite subcover
{f−1(Uαi)/i = 1, 2, . . . , n} of X. It follows that {Uαi/i = 1, 2, . . . , n} is a finite
subcover of Y . Hence the space Y is D-compact.

The proof of other cases are similar. 2

Definition 3.31. A space X is said to be D− T1 (resp. r− T1 [4]) if for each pair
of distinct points x and y of X, there exist disjoint D-open (resp.regular open) sets
U1 and U2 such that x ∈ U1 and y ∈ U2, x 6∈ U2 and y 6∈ U1.

Theorem 3.32. Let f : (X, τ) → (Y, σ) is completely D-irresolute injective function
and Y is D − T1 then X is r − T1.
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Proof. Let x, y be any two distinct points of X. Since f is injective, f(x) 6= f(y).
Since Y is D − T1, there exist D-open sets V and W in Y such that f(x) ∈ V and
f(y) ∈ W , f(x) /∈ W and f(y) /∈ V . Since f is completely D-irresolute, there exist
regular open sets f−1(V ) and f−1(W ) in X such that x ∈ f−1(V ) and y ∈ f−1(W ),
x /∈ f−1(W ) and y /∈ f−1(V ). Hence X is r − T1. 2

Definition 3.33. A space (X, τ) is said to be D − T2 if for each pair of distinct
points x and y in X, there exist disjoint D-open sets U1 and U2 in X such that
x ∈ U1 and y ∈ U2.

Theorem 3.34. If f : (X, τ) → (Y, σ) is completely D-irresolute injective function
and Y is D − T2 then X is T2.

Proof. Let x, y be any two distinct points of X. Since f is injective, f(x) 6= f(y).
Since Y is D − T2, there exist D-open sets V and W in Y such that f(x) ∈ V and
f(y) ∈ W . Since f is completely D-irresolute, there exist regular open sets f−1(V )
and f−1(W ) in X such that x ∈ f−1(V ) and y ∈ f−1(W ) and f−1(V )∩ f−1(W ) =
Φ. Hence X is T2. 2

Definition 3.35. A function f : (X, τ) → (Y, σ) is called D-closed if the image of
each D-closed set of X is D-closed in Y .

Theorem 3.36. A surjective map f : (X, τ) → (Y, σ) is D -closed iff for each subset
B of Y and each D-open set U of X containing f−1(B) there exists a D-open set
V in Y containing B such that f−1(V ) ⊆ U .

Proof. Suppose that f is D-closed map. Let B ⊆ Y and U be D-open set of X
such that f−1(B) ⊆ U . Since f is D-closed, (f(U c))c = V is a D-open set in Y
containing B such that f−1(V ) ⊆ U . Conversely, let F be any D-closed set of X.
Put B = (f(F ))c. Then we have f−1(B) ⊆ F c is D-open in X. By hypothesis there
exist V of Y such that B ⊆ V and f−1(V ) ⊆ F c and so F ⊆ (f−1(V ))c = f−1(V c).
Hence we obtain f(F ) = V c. Since V c is D-closed, f(F ) is D-closed. Hence f is
D-closed. 2

Definition 3.37. A space X is said to be strongly D-normal (resp. midly D-
normal) if for each pair of disjoint D-closed (resp. regular closed) sets A and B of
X there exist disjoint D-open sets U and V such that A ⊆ U and B ⊆ V .

Theorem 3.38. If f : (X, τ) → (Y, σ) is completely D-irresolute, D -closed function
from a midly D-normal space X onto a space Y then Y is strongly D-normal.

Proof. Let A and B be two disjoint D-closed subsets of Y . Since f is completely
D-irresolute, f−1(A) and f−1(B) are disjoint regular closed subsets of X. Since
X is midly D-normal space, there exist disjoint D-open sets U and V such that
f−1(A) ⊆ U and f−1(B) ⊆ V . Since f is D -closed, f(U c) and f(V c) are D-
closed sets in Y . Then by theorem 3.36, there exist D-open sets G = (f(U c))c and
H = (f(V c))c containing A and B such that f−1(G) ⊆ U and f−1(H) ⊆ V . Clearly
G and H are disjoint D-open subsets of Y . Hence Y is strongly D-normal space. 2
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Definition 3.39. A space X is said to be

(i) strongly D-regular if for each D-closed subset F and each point x ∈ F , there
exist disjoint D-open sets U and V in X such that x ∈ U and F ⊆ V .

(ii) almost D-regular if for each regular closed subset F and each point x ∈ F ,
there exist disjoint D-open sets U and V in X such that x ∈ U and F ⊆ V .

Theorem 3.40. If f is a completely D-irresolute, D -closed function of an almost
D-regular space X onto a space Y , then Y is strongly D-regular space.

Proof. Let F be D-closed subset of Y and let y ∈ F . Then f−1(F ) is regular closed
subset of X such that f−1(y) = x /∈ f−1(F ).Since X is almost D-regular space, there
exist disjoint D-open sets U and V in X such that f−1(y) ∈ U and f−1(F ) ⊆ V .
Since f is D-closed and by theorem 3.36, there exist D-open sets G = (f(U c))c

such that f−1(G) ⊆ U , y ∈ G and H = (f(V c))c such that f−1(H) ⊆ V , F ⊆ H.
Clearly G and H are disjoint subsets of Y . Hence Y is strongly D-regular space. 2

4. Weakly D-irresolute Functions

Definition 4.1. A function f : (X, τ) → (Y, σ) is said to be weakly D-irresolute if
for each point x ∈ X and each V ∈ DO(Y, f(x)), there exists a U ∈ DO(X, x) such
that f(U) ⊆ D − cl(V ).

Example 4.2. Let X = {a, b, c} = Y with topologies τ = {φ, {a, b}, X} and
σ = {φ, {a}, {b}, {a, b}, Y }. Then the identity function f : (X, τ) → (Y, σ) is
weakly D-irresolute.

Theorem 4.3. Every D-irresolute function is weakly D-irresolute.

Proof. Let x ∈ X and V ∈ DO(Y, f(x)). Since f is D-irresolute, f−1(V ) is D-open
in X. Then there exists U = f−1(V ) ∈ DO(X, x) such that f(U) ⊆ V ⊆ D−cl(V ).
Hence f is weakly D-irresolute. 2

Remark 4.4. The converse of the above theorem need not be true as seen from
the following example

Example 4.5. Let X = {a, b, c} = Y with topologies τ = {φ, {c}, {b, c},
X} and σ = {φ, {a}, {b}, {a, b}, Y }. Then the identity function
f : (X, τ) → (Y, σ) is weakly D-irresolute but not D-irresolute. Observe that for
the D-closed set V = {c} in (Y, σ), f−1(V ) = {c} is not D-closed in (X, τ).

Remark 4.6. Contra-D-irresolute and weakly D-irresolute are independent. It is
shown by the following examples.

Example 4.7. Let X = {a, b, c} = Y with topologies τ = {φ, {b}, {a, b},
X} and σ = {φ, {c}, {a, b}, Y }. Define f : (X, τ) → (Y, σ) by f(a) = c; f(b) = a;
f(c) = b. Then the function f is contra-D-irresolute but not weakly D-irresolute.
Observe that for the D-open sets V = {c} and U = {a, b}, f(U) 6⊂ D − cl(V ).
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Example 4.8. Let X = {a, b, c} = Y with topologies τ = {φ, {b}, X} and σ =
{φ, {c}, Y }. Define the function f : (X, τ) → (Y, σ) by f(a) = a; f(b) = c; f(c) = b.
Then the function f is weakly D-irresolute but not contra D-irresolute. Observe
that for the D-open set V = {c}, f−1(V ) = {b} is not D-closed.

Remark 4.9. From the above discussion and known results we have the following
implication A −→ B (A 6←→ B) represents A implies B but not conversely (A and
B are independent of each other).

strongly continuous −→ perfectly D-continuous−→ completely D-irresolute
↓ ↓ ↓

completely D-irresolute −→ contra-D-irresolute 6←→ weakly-D-irresolute

Definition 4.10. A space (X, τ) is said to be

(i) locally indiscrete space [13] if every open subset of X is closed.

(ii) locally indiscrete D-space if every D-open (resp. D-closed) set is D-closed
(resp. D-open).

Theorem 4.11. A function f : (X, τ) → (Y, σ) is weakly D-irresolute if the graph
function defined by g(x) = (x, f(x)) for each x ∈ X is weakly D-irresolute.

Proof. Let x ∈ X and V ∈ DO(Y, f(x)). Then X × V is a D-open set of X × Y
containing g(x). Since g is weakly D-irresolute, there exists V ∈ DO(X, x) such
that g(U) ⊆ D− cl(X ×V ) ⊆ X ×D− cl(V ). Hence we have f(U) ⊆ D− cl(V ).2

Lemma 4.12. A locally indiscrete D-space is D − T2 if and only if for each pair
of distinct points x, y ∈ X, there exist U ∈ DO(X,x) and V ∈ DO(X, y) such that
D − cl(U) ∩D − cl(V ) = Φ.

Proof. This follows immediately from the definition of locally indiscrete D-space
and lemma 2.5. 2

Theorem 4.13. If a locally indiscrete D-space Y is D−T2 space and f : (X, τ) →
(Y, σ) is a weakly D-iresolute injection then X is D − T2.
Proof. Let x, y be any two distinct points of X. Since f is injective, f(x) 6= f(y).
Since Y is locally indiscrete D-space and D − T2 space, by lemma 4.12, there exist
V ∈ DO(Y, f(x)) and W ∈ DO(Y, f(y)) such that D − cl(V ) ∩ D − cl(W ) = Φ.
Since f is weakly D-irresolute G ∈ DO(X, x) and H ∈ DO(X, y) such that
f(G) ⊆ D − cl(V ) and f(H) ⊆ D − cl(W ). Hence we obtain G ∩H = Φ. Hence X
is D − T2. 2
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