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Abstract. In this paper, we establish some new nonlinear integral inequalities of

Gronwall-Bellman type. These inequalities generalize some famous inequalities which can

be used in applications as handy tools to study the qualitative as well as quantitative

properties of solutions of some nonlinear ordinary differential and integral equations. More

accurately we extend certain results which have been proved in A. Abdeldaim and M. Yak-

out [1] and H. El-Owaidy, A. A. Ragab, A. Abdeldaim [7] too.

1. Introduction

It is well known that, the differential and integral inequalities of one variable
which provide explicit bounds on unknown functions, occupy a very privileged po-
sition in the development of the theory of linear and nonlinear ordinary differential
and integral equations see for example [2, 8, 9, 10, 11]. In the qualitative theory of
differential and Volterra integral equations, Gronwall type inequalities of one vari-
able for the real functions play a very important role. In the recent years, these
inequalities have been greatly enriched by the recognition of their potential and
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intrinsic worth in many applications of the applied sciences. The first use of Gron-
wall inequality to establish boundedness and stability is due to R. Bellman, for
the ideas and the methods of R. Bellman see [5]. In 1943, Bellman [6] proved the
fundamental lemma (see Theorem 1.1) named Gronwall-Bellman’s inequality which
plays a vital role in studying stability and asymptotic behavior of solutions of dif-
ferential and integral equations see for instance [4, 5]. After the discovery of the
Gronwall-Bellman’s inequality, the inequalities of this type are known in the litera-
ture as Bellman’s inequality, Bellman-Gronwall’s inequality or Gronwall-Bellman’s
inequality [2, 11]. In view of the important applications of the Gronwall-Bellman’s
inequality see [2, 3], in the past few years, Pachpatte in [11], established new gen-
eralizations of the Gronwall-Bellman’s inequality which can be used as powerful
tools in the study of certain classes of differential and integral equations. In 1999
El-Owaidy et al [7] obtained several new integral inequalities of Gronwall-Bellman
inequality type. These inequalities are directly useful in studying some properties
of solutions of ordinary differential equations. The aim of this paper is to extend
certain results which have been proved in [1] and [7] to obtain new generalizations
for some former famous inequalities, which can be used as handy tools to study
the qualitative as well as the quantitative properties of solutions of some nonlinear
ordinary differential and integral equations.

Theorem 1.1. (Gronwall-Bellman’s inequality [6]) let x(t) and f(t) be non-negative
continuous functions defined on I = [0,∞), for which the inequality

x(t) ≤ x0 +

∫ t

0

f(s)x(s)ds, ∀t ∈ I,

holds, where x0 ≥ 0 is a constant.
Then

x(t) ≤ x0 exp

[∫ t

0

f(λ)dλ

]
, ∀t ∈ I.

Theorem 1.2. (A. Abdeldaim and M. Yakout’s inequality [1]) Let x(t), f(t) and
h(t) be non-negative real-valued continuous functions defined on I = [0,∞), and
satisfy the inequality

xp(t) ≤ x0 +

∫ t

0

f(s)xp(s)ds+

∫ t

0

h(s)xq(s)ds, ∀t ∈ I,

where p > q ≥ 0, are constants. Then

x(t) ≤ exp

(
1

p

∫ t

0

f(s)ds

)[
xp1

0 + p1

∫ t

0

h(s) exp

(
−p1

∫ s

0

f(λ)dλ

)
ds

][ 1
p−q ]

,

for all t ∈ I, where p1 =

[
p−q
p

]
.
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2. Main Results

In this section, we state and prove some new integral inequalities of Gronwall-
Bellman type, which can be used in applications as handy tools, and in the analysis
of various problems in the theory of the nonlinear ordinary differential and integral
equations.

Theorem 2.1. Let x(t) and h(t) be real-valued non-negative continuous functions
defined on I = [0,∞), and n(t) be a positive monotonic non-decreasing continuous
function defined on I = [0,∞) and satisfy the inequality

(2.1) xp(t) ≤ np(t) +

∫ t

0

h(s)xq(s)ds, ∀t ∈ I,

where p > q ≥ 0. Then

(2.2) x(t) ≤ n(t)

[
1 +

[
p− q

p

] ∫ t

0

h(s)n−[p−q](s)ds

][ 1
p−q ]

, ∀t ∈ I.

Proof. Since n(t) is a positive, monotonic non-decreasing function, we observe from
(2.1) that [

x(t)

n(t)

]p
≤ 1 +

∫ t

0

h(s)n−[p−q](s)

[
x(s)

n(s)

]q
ds, ∀t ∈ I.

Let

(2.3) m(t) =
x(t)

n(t)
, m(0) ≤ 1,

hence

mp(t) ≤ 1 +

∫ t

0

h(s)n−[p−q](s)mq(s)ds, ∀t ∈ I.

Using Theorem 1.2 at f(t) = 0, we have

(2.4) m(t) ≤
[
1 +

[
p− q

p

] ∫ t

0

h(s)n−[p−q](s)ds

][ 1
p−q ]

, ∀t ∈ I.

The required inequality in (2.2) follows from (2.3) and (2.4).
The proof is complete. 2

Remark 2.1. It is interesting to note that when q = 1 Theorem 2.1 reduces to
Theorem 2 in [7].

Now we will give an inequality, which is circulated to the previous inequalities
in Theorems 1.2, 2.1, and many other famous inequalities in different papers, also
it has many applications.
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Theorem 2.2. Let x(t) and f(t) be non-negative real-valued continuous functions
defined on I = [0,∞) and n(t) be a positive monotonic non-decreasing continuous
function defined also on I and satisfy the inequality

(2.5) xp(t) ≤ np(t) +

∫ t

0

f(s)xp(s)ds+

∫ t

0

h(s)xq(s)ds, ∀t ∈ I,

where p > q ≥ 0. Then

(2.6) x(t) ≤ n(t)k1(t), ∀t ∈ I,

where

k1(t) = exp

(
1

p

∫ t

0

f(s)ds

)
×
[
1 +

[
p− q

p

] ∫ t

0

h(s)n−[p−q](s) exp

(
−[p− q]

p

∫ s

0

f(λ)dλ

)
ds

][ 1
p−q ]

,

(2.7)

for all t ∈ I.

Proof. Since n(t) is a positive monotonic non-decreasing function, we observe from
(2.5) that[

x(t)

n(t)

]p
≤ 1 +

∫ t

0

f(s)

[
x(s)

n(s)

]p
ds+

∫ t

0

h(s)n−[p−q](s)

[
x(t)

n(t)

]q
ds, ∀t ∈ I.

Let

(2.8) m(t) =
x(t)

n(t)
, m(0) ≤ 1, ∀t ∈ I.

Hence

mp(t) ≤ 1 +

∫ t

0

f(s)mp(s)ds+

∫ t

0

h(s)n−[p−q](s)mq(s)ds, ∀t ∈ I.

Now, we have from Theorem 1.2.

(2.9) m(t) ≤ k1(t), ∀t ∈ I,

where k1(t) as defined in (2.7) The required inequality in (2.6) follows from (2.8)
and (2.9). The proof is complete. 2

Remark 2.2.

1. It is interesting to note that the special case when n(t) = n0 (any constant),
the inequality given in Theorem 2.2, reduces to the inequality given in The-
orem 1.2.
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2. When p = 1 the inequality given in Theorem 2.2, reduces to the inequality
given in Theorem 7 in [7].

3. If we put n(t) = n0, h(t) = 0, and p = 1, in Theorem 2.2, we get the well
known Gronwall-Bellman inequality (see Theorem 1.1).

4. If we put n(t) = n0, and p = 1, The inequality given in Theorem 2.2, reduces
to the Willett and Wong inequality [12].

5. When we put p = 2, q = 1, n(t) = n0, and f(t) = 0, the inequality given in
Theorem 2.2, reduces to the well known Ou-lnag inequality [10].

6. When f(t) = 0 the inequality given in Theorem 2.2, reduces to the inequality
given in Theorem 2.1.

Theorem 2.3. Let x(t) be a real-valued positive continuous function and f(t), g(t)
are real-valued non-negative continuous functions defined on I = [0,∞) and satisfy
the inequality

(2.10) xp(t) ≤ x0 +

∫ t

0

f(s)

[
xq(s) +

∫ s

0

g(λ)x(λ)dλ

]
ds,

where x0 is non-negative constant and p > q ≥ 0. Then

(2.11) x(t) ≤
[
x0 +

∫ t

0

f(s)k2(s) exp

(∫ s

0

g(λ)dλ

)
ds

] 1
p

, ∀t ∈ I,

where

(2.12) k2(t) =

[
x

q[p−q]
p

0 +

[
q[p− q]

p

] ∫ t

0

f(s) exp

(
−[p− q]

∫ s

0

g(λ)dλ

)
ds

][ 1
p−q ]

,

for all t ∈ I.

Proof. Let Jp(t) equal the right hand side in (2.10), we have J(0) = x
1
p

0 and

(2.13) x(t) ≤ J(t), ∀t ∈ I.

Differentiating Jp(t), leads to

(2.14) pJ [p−1](t)
dJ(t)

dt
≤ f(t)Y (t), ∀t ∈ I,

where Y (t) = Jq(t) +
∫ t

0
g(s)J(s)ds, thus we have Y (0) = Jq(0) = x

q
p

0 , and

(2.15) J(t) ≤ Y (t), ∀t ∈ I.
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Differentiating Y (t) and using (2.14) and (2.15), produces

dY (t)

dt
≤ q

p
f(t)Y [q−p+1](t) + g(t)Y (t), ∀t ∈ I,

but Y (t) > 0, thus we have

(2.16) Y [p−q−1](t)
dY (t)

dt
− g(t)Y [p−q](t) ≤ q

p
f(t), ∀t ∈ I.

Now if we put

(2.17) Z1(t) = Y [p−q](t), ∀t ∈ I,

then we have Z1(0) = Y [p−q](0) = x
q[p−q]

p

0 and Y [p−q−1](t)dY (t)
dt = [ 1

p−q ]
dZ1

dt , thus

from (2.16) we obtain

dZ1(t)

dt
− [p− q]g(t)Z1(t) ≤ [

q[p− q]

p
]f(t), ∀t ∈ I.

The above inequality implies the following estimation for Z1(t)

Z1(t) ≤ exp

(
[p− q]

∫ t

0

g(s)ds

)
×
[
x

q[p−q]
p

0 +

[
q[p− q]

p

] ∫ t

0

f(s) exp

(
−[p− q]

∫ s

0

g(λ)dλ

)
ds

]
,

(2.18)

for all t ∈ I, then from (2.18) in (2.17), we obtain

(2.19) Y (t) ≤ k2(t) exp

(∫ t

0

g(s)ds

)
, ∀t ∈ I,

where k2(t) is as defined in (2.12), thus from(2.14) we have

pJ [p−1](t)
dJ(t)

dt
≤ f(t)k2(t) exp

(∫ t

0

g(s)ds

)
, ∀t ∈ I.

Taking t = s in the above inequality and Integrating from 0 to t, gives

(2.20) J(t) ≤
[
x0 +

∫ t

0

f(s)k2(s) exp

(∫ s

0

g(λ)dλ

)
ds

] 1
p

, ∀t ∈ I.

Using (2.20) in (2.13), leads to the required inequality in (2.11). The proof is
complete. 2

Remark 2.3. It is interesting to note that the special case when p = 1, Theorem
2.3 reduces to Theorem 3 in [7].
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If we put p = 2 and, q = 0 in Theorem 2.3, we can easily drive the following
corollary:

Corollary 2.1. Let x(t) be a real-valued positive continuous function and f(t),
g(t) are real-valued non-negative continuous functions defined on I = [0,∞) and
satisfy the inequality

x2(t) ≤ x0 +

∫ t

0

f(s)

[
1 +

∫ s

0

g(λ)x(λ)dλ

]
ds, ∀t ∈ I,

where x0 is non-negative constant. Then

x(t) ≤

√
x0 +

∫ t

0

f(s) exp

(∫ s

0

g(λ)dλ

)
ds, ∀t ∈ I.

Theorem 2.4. Let x(t) be a real-valued positive continuous function and f(t), g(t)
are real-valued non-negative continuous functions defined on I = [0,∞) and satisfy
the inequality

(2.21) xp(t) ≤ x0 +

∫ t

0

f(s)

[
xp(s) +

∫ s

0

g(λ)x(λ)dλ

]
ds, ∀t ∈ I,

where x0 and p are positive constants. Then

(2.22) x(t) ≤ x
1
p

0

[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(λ) + g(λ)]dλ

)
ds

] 1
p

, ∀t ∈ I.

Proof. Let Jp
1 (t) equal the right hand side in (2.21), we have J1(0) = x

1
p

0 and

(2.23) x(t) ≤ J1(t), ∀t ∈ I.

Differentiating Jp
1 (t), leads to

(2.24) pJ
[p−1]
1 (t)

dJ1(t)

dt
≤ f(t)Y1(t), ∀t ∈ I,

where Y1(t) = Jp
1 (t) +

∫ t

0
g(s)J1(s)ds, thus we have Y1(0) = Jp

1 (0) = x0 and

(2.25) J1(t) ≤ Y1(t), ∀t ∈ I.

Differentiating Y1(t) and using (2.24) and (2.25), produces

dY1(t)

dt
≤ [f(t) + g(t)]Y1(t), ∀t ∈ I.

Taking t = s in the above inequality and Integrating from 0 to t, we get

(2.26) Y1(t) ≤ x0 exp

(∫ t

0

[f(s) + g(s)]ds

)
, ∀t ∈ I.
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Substituting (2.26) in (2.24) we have

J
[p−1]
1 (t)

dJ1(t)

dt
≤ 1

p
x0f(t) exp

(∫ t

0

[f(s) + g(s)]ds

)
, ∀t ∈ I.

The above inequality implies an estimation for J1(t) as follows

(2.27) J1(t) ≤ x
1
p

0

[
1 +

∫ t

0

f(s) exp

(∫ s

0

[f(λ) + g(λ)]dλ

)
ds

] 1
p

, ∀t ∈ I.

Using (2.27) in (2.23), we get the required inequality in (2.22). The proof is com-
plete. 2

Theorem 2.5. Let x(t), f(t) and g(t) be real-valued positive continuous functions
defined on I = [0,∞) and satisfy the inequality

(2.28) x(t) ≤ x0 +

∫ t

0

f(s)

[
x[2−p](s) +

∫ s

0

g(λ)xq(λ)dλ

]p
ds, ∀t ∈ I,

where x0 > 0, and 0 < p ≤ 2, 0 ≤ q < 1, are constants. Then

(2.29) x(t) ≤ x0 +

∫ t

0

f(s)k3(s)ds, ∀t ∈ I,

where

K3(t) = exp

(
p(2− p)

∫ t

0

f(s)ds

)
×
[
x
[1−q][2−p]
0 + (1− q)

∫ t

0

g(s) exp

(
(1− q)(2− p)

∫ t

0

f(λ)dλ

)
ds

][ p
1−q ]

,

(2.30)

for all t ∈ I.

Proof. Let J2(t) equal the right hand side in (2.28), we have J2(0) = x0 and

(2.31) x(t) ≤ J2(t), ∀t ∈ I.

Differentiating J2(t), produces

(2.32)
dJ2(t)

dt
≤ f(t)Y p

2 (t), ∀t ∈ I,

where Y2(t) = J
[2−p]
2 (t) +

∫ t

0
g(s)Jq

2 (s)ds, thus we have

Y2(0) = J
[2−p]
2 (0) = x

[2−p]
0 and

(2.33) J2(t) ≤ Y2(t), ∀t ∈ I.
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Differentiating Y2(t) and using (2.32) and (2.33), leads to

(2.34)
dY2(t)

dt
≤ (2− p)f(t)Y2(t) + g(t)Y q

2 (t), ∀t ∈ I,

but Y2(t) > 0 then we can write the inequality (2.34) in the following form

(2.35) Y −q
2 (t)

dY2(t)

dt
− (2− p)f(t)Y

[1−q]
2 (t) ≤ g(t), ∀t ∈ I.

If we let, Y
[1−q]
2 (t) = Z2(t), we have Z2(0) = Y

[1−q]
2 (0) = x

[1−q][2−p]
0 , and

Y −q
2 (t)dY2(t)

dt = 1
(1−q)

dZ2

dt , then we can write the inequality (2.35) as follows

(2.36)
dZ2

dt
− (1− q)(2− p)f(t)Z2 ≤ (1− q)g(t), ∀t ∈ I.

The inequality (2.36) implies an estimation for Z2(t) as in the following

Z2(t) ≤ exp

(
(1− q)(2− p)

∫ t

0

f(s)ds

)
×
[
x
[1−q][2−p]
0 + (1− q)

∫ t

0

g(s) exp

(
−(1− q)(2− p)

∫ t

0

f(λ)dλ

)
ds

]
,

(2.37)

for all t ∈ I.
But Y

[1−q]
2 (t) = Z2(t), then from (2.37), we have

(2.38) Y p
2 (t) ≤ k3(t), ∀t ∈ I,

where k3(t) as defined in (2.30), and from (2.38) in (2.32), we obtain

dJ2(t)

dt
≤ f(t)k3(t), ∀t ∈ I.

The above inequality implies an estimation for J2(t) as in the following

(2.39) J2(t) ≤ x0 +

∫ t

0

f(s)k3(s)ds, ∀t ∈ I.

Using (2.39) in (2.31), we get the required inequality in (2.29). The proof is com-
plete. 2

Remark 2.4. When g(t) = 0 and p = 1, the inequality given in Theorem 2.5,
reduces to the Gronwall-Bellman inequality (see Theorem 1.1.

In the special case when p = 2, and q = 1
2 , Theorem 2.5 takes the following

form:
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Corollary 2.2. Let x(t), f(t) and g(t) be real-valued positive continuous functions
defined on I = [0,∞) and satisfy the inequality

x(t) ≤ x0 +

∫ t

0

f(s)

[
1 +

∫ s

0

g(λ)
√
x(λ)dλ

]2
ds, ∀t ∈ I,

where x0 > 0. Then

x(t) ≤ x0 +

∫ t

0

f(s)

[
1 +

1

2

∫ s

0

g(λ)

]4
ds, ∀t ∈ I.

Theorem 2.6. Let x(t) be a real-valued positive continuous function and f(t), g(t)
are non-negative real-valued continuous functions defined on I = [0,∞), and satisfy
the inequality

(2.40) xp(t) ≤ x0 +

∫ t

0

f(s)x(s)

[
xq(s) +

∫ s

0

g(λ)x(λ)dλ

]r
ds,

for all t ∈ I, where x0 > 0, r > 0, q > 0, and r + q > p, p > 1 are constants. Then

(2.41) x(t) ≤
[
x
[ p−1

p ]

0 +

(
p− 1

p

)∫ t

0

f(s)k4(s)ds

][ 1
p−1 ]

, ∀t ∈ I,

where

(2.42) k4(t) =

x
qr
p

0 exp

(
r
∫ t

0
g(s)ds

)
[
1− q[r+q−p]

p x
q[r+q−p]

p

0

∫ t

0
f(s) exp([r + q − p]

∫ s

0
g(λ)dλ)ds

][ r
r+q−p ]

,

for all t ∈ I, such that
q[r+q−p]

p x
q[r+q−p]

p

0

∫ t

0
f(s) exp([r + q − p]

∫ s

0
g(λ)dλ)ds < 1, for all t ∈ I.

Proof. Let Jp
3 (t) equal the right hand side in (2.40), we have J3(0) = x

1
p

0 and

(2.43) x(t) ≤ J3(t), ∀t ∈ I.

Differentiating Jp
3 (t), gives

(2.44) pJ
(p−1)
3

dJ3(t)

dt
≤ f(t)J3(t)Y

r
3 (t), ∀t ∈ I,

where Y3(t) = Jq
3 (t) +

∫ t

0
g(s)J3(s)ds, hence Y3(0) = Jq

3 (0) = x
q
p

0 , and

(2.45) J3(t) ≤ Y3(t) ∀t ∈ I.
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Differentiating Y3(t) and using (2.44) and (2.45), leads to

(2.46)
dY3(t)

dt
≤ q

p
f(t)Y

[r+q−p+1]
3 (t) + g(t)Y3(t), ∀t ∈ I,

but Y3(t) > 0 then we can write the inequality (2.46) in the following form

(2.47) Y
−[r+q−p+1]
3 (t)

dY3(t)

dt
− g(t)Y

−[r+q−p]
3 (t) ≤ q

p
f(t), ∀t ∈ I.

If we let

(2.48) Y
−[r+q−p]
3 (t) = Z3(t), ∀t ∈ I,

we have

Z3(0) = Y
−[r+q−p]
3 (0) = x

−q[r+q−p]
p

0 , and Y
−[r+q−p+1]
3 (t)dY3(t)

dt = −1
[r+q−p]

dZ3

dt , then

we can write the inequality (2.47) as follows

dZ3

dt
+ (r + q − p)g(t)Z3(t) ≥

−q[r + q − p]

p
f(t), ∀t ∈ I.

The above inequality implies an estimation for Z3(t) as in the following inequality

(2.49) Z3(t) ≥

[
1− q[r+q−p]

p x
q[r+q−p]

p

0

∫ t

0
f(s) exp([r + q − p]

∫ s

0
g(λ)dλ)ds

]
x

q[r+q−p]
p

0 exp

(
(r + q − p)

∫ t

0
g(s)ds

) ,

for all t ∈ I, then from (2.48) and (2.49), we have

(2.50) Y r
3 (t) ≤ k4(t), ∀t ∈ I,

where k4(t) as defined in (2.42), thus from (2.50) in (2.44), we have

J
[p−2]
3 (t)

dJ3(t)

dt
≤ 1

p
f(t)k4(t), ∀t ∈ I.

Taking t = s in the above inequality and integrating from 0 to t , produces

(2.51) J3(t) ≤
[
x
[ p−1

p ]

0 +

(
p− 1

p

)∫ t

0

f(s)k4(s)ds

][ 1
p−1 ]

, ∀t ∈ I.

Using (2.51) in (2.43), we get the required inequality in (2.41). The proof is com-
plete. 2
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Theorem 2.7. Let x(t) be a real-valued positive continuous function and f(t), g(t)
are non-negative real-valued continuous functions defined on I = [0,∞), and satisfy
the inequality

(2.52) x(t) ≤ x0 +

∫ t

0

f(s)x(s)

[
xq(s) +

∫ s

0

g(λ)x(λ)dλ

]p
ds,

for all t ∈ I, where x0 > 0, p > 0, q > 0, and p+ q > 1, are constants. Then

(2.53) x(t) ≤ x0 exp

(∫ t

0

f(s)k5(s)ds

)
, t ∈ I,

where
(2.54)

k5(t) =

xpq0 exp

(
p
∫ t

0
g(s)ds

)
[
1− q[p+ q − 1]x

q[p+q−1]
0

∫ t

0
f(s) exp([p+ q − 1]

∫ s

0
g(λ)dλ)ds

][ p
p+q−1 ]

,

for all t ∈ I, such that

q[p+ q − 1]x
q[p+q−1]
0

∫ t

0
f(s) exp([p+ q − 1]

∫ s

0
g(λ)dλ)ds < 1, for all t ∈ I.

Proof. Let J4(t) equal the right hand side in (2.52), we have J4(0) = x0 and

(2.55) x(t) ≤ J4(t), ∀t ∈ I.

Differentiating J4(t), gives

(2.56)
dJ4(t)

dt
≤ f(t)J4(t)Y

p
4 (t), ∀t ∈ I,

where Y4(t) = Jq
4 (t) +

∫ t

0
g(s)J4(s)ds, hence Y4(0) = Jq

4 (0) = xq0, and

(2.57) J4(t) ≤ Y4(t) ∀t ∈ I.

Differentiating Y4(t) and using (2.56) and (2.57), leads to

dY4(t)

dt
≤ qf(t)Y

[p+q]
4 (t) + g(t)Y4(t), ∀t ∈ I,

but Y4(t) > 0, then we have

(2.58) Y
−[p+q]
4 (t)

dY4(t)

dt
− g(t)Y

[1−(p+q)]
4 (t) ≤ qf(t), ∀t ∈ I.

If we let

(2.59) Y
[1−(p+q)]
4 (t) = Z4(t), ∀t ∈ I,
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we have
Z4(0) = Y

−[p+q−1]
4 (0) = x

−q[p+q−1]
0 , and Y

−[p+q]
4 (t)dY4(t)

dt = −1
[p+q−1]

dZ4

dt , then we

can write the inequality (2.58) as follows

(2.60)
dZ4

dt
+ (p+ q − 1)g(t)Z4(t) ≥ −q(p+ q − 1)f(t), ∀t ∈ I.

The above inequality implies an estimation for Z4(t) as in the following inequality

(2.61) Z4(t) ≥

[
1− q(p+ q − 1)x

q[p+q−1]
0

∫ t

0
f(s) exp([p+ q − 1]

∫ s

0
g(λ)dλ)ds

]
x
q[p+q−1]
0 exp

(
(p+ q − 1)

∫ t

0
g(s)ds

) ,

for all t ∈ I, then from (2.59) and (2.61), we have

(2.62) Y p
4 (t) ≤ k5(t), ∀t ∈ I,

where k5(t) as defined in (2.54), thus from (2.62) in (2.56), we have

(2.63)
dJ4(t)

dt
≤ f(t)k5(t), ∀t ∈ I.

Taking t = s in the above inequality and integrating from 0 to t , produces

(2.64) J4(t) ≤ x0 exp

(∫ t

0

f(s)k5(s)ds

)
, t ∈ I.

Using (2.64) in (2.55), we get the required inequality in (2.53).
The proof is complete. 2

Remark 2.5. If we put q = 1, the inequality given in Theorem 2.7, reduces to
Theorem 3.2 in [1].

Theorem 2.8. Let x(t), f(t) and g(t) be real-valued positive continuous functions
defined on I = [0,∞) and satisfy the inequality

(2.65) x(t) ≤ x0 +

∫ t

0

f(s)

[
xp(s) +

∫ s

0

g(λ)x[2p−1](λ)dλ

]p
ds,

for all t ∈ I, where x0 > 0, and p ∈ (0, 1), are constants. Then

(2.66) x(t) ≤ x0 +

∫ t

0

f(s)k6(s), ∀t ∈ I,

where

(2.67) k6(t) =

[
x
2p[1−p]
0 + 2(1− p)

∫ s

0

[pf(λ) + g(λ)]dλ

][ p
2[1−p]

]

ds, ∀t ∈ I.
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Proof. Let J5(t) equal the right hand side in (2.65), we have J5(0) = x0 and

(2.68) x(t) ≤ J5(t), ∀t ∈ I.

Differentiating J5(t), gives

(2.69)
dJ5(t)

dt
≤ f(t)Y p

5 (t), ∀t ∈ I,

where Y5(t) = Jp
5 (t) +

∫ t

0
g(s)J

[2p−1]
5 (s)ds, thus we have

Y5(0) = Jp
5 (0) = xp0 and

(2.70) J5(t) ≤ Y5(t), ∀t ∈ I.

Differentiating Y5(t) and using (2.69), and (2.70), leads to

dY5(t)

dt
≤ [pf(t) + g(t)]Y

[2p−1]
5 (t), ∀t ∈ I,

then

Y
[1−2p]
5 (t)

dY5(t)

dt
≤ [pf(t) + g(t)], ∀t ∈ I.

Taking t = s in the last inequality and integrating both sides from 0 to t and using

Y
2[1−p]
5 (0) = x

2p[1−p]
0 , gives

(2.71) Y p
5 (t) ≤ k6(t), ∀t ∈ I,

where k6(t) as defined in (2.67), thus from (2.71) in (2.69) we have

dJ5(t)

dt
≤ f(t)k6(t), ∀t ∈ I,

which implies the estimation for J5(t) as

(2.72) J5(t) ≤ x0 +

∫ t

0

f(s)k6(s), ∀t ∈ I.

Using (2.72) in (2.68), we get the required inequality in (2.66). The proof is com-
plete. 2

Theorem 2.9. Let x(t) be a real-valued positive continuous function and f(t), g(t)
are non-negative real-valued continuous functions defined on I = [0,∞), and n(t) be
a positive monotonic non-decreasing continuous function on I = [0,∞) and satisfy
the inequality

(2.73) x(t) ≤ n(t) +

∫ t

0

f(s)

[
x(s) +

∫ s

0

g(λ)x(λ)dλ

]p
ds,
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for all t ∈ I, where p ∈ (0, 1). Then

(2.74) x(t) ≤ n(t)

[
1 +

∫ t

0

f(s)k7(s)n
[p−1](s)

]
, ∀t ∈ I,

where

k7(t) ≤ exp

(
p(1− p)

∫ t

0

g(s)ds

)[
1 + (1− p)

∫ t

0

f(s)n[p−1](s)

× exp

(
−(1− p)

∫ s

0

g(λ)dλ

)
ds

][ p
1−p ]

, ∀t ∈ I.

(2.75)

Proof. Since n(t) is a positive monotonic nondecreasing function, we observe from
the inequality (2.73)[

x(t)

n(t)

]
≤1 +

∫ t

0

f(s)n[p−1](s)

×
[(

x(s)

n(s)

)
+

∫ t

0

g(λ)

(
x(λ)

n(λ)

)
dλ

]p
ds, ∀t ∈ I.

Let

(2.76) m(t) =
x(t)

n(t)
, m(0) ≤ 1, ∀t ∈ I.

Hence

m(t) ≤ 1 +

∫ t

0

f(s)n[p−1](s)

[
m(s) +

∫ t

0

g(λ)m(λ)d(λ)

]p
, ∀t ∈ I.

Let

J6(t) = 1 +

∫ t

0

f(s)n[p−1](s)

[
m(s) +

∫ t

0

g(λ)m(λ)d(λ)

]p
, ∀t ∈ I,

we can easily obtain J6(0) = 1, and

(2.77) m(t) ≤ J6(t), ∀t ∈ I.

Differentiating J6(t), gives

(2.78)
dJ6(t)

dt
≤ f(t)n[p−1](t)Y p

6 (t), ∀t ∈ I,

where Y6(t) = J6(t) +
∫ t

0
g(s)J6(s)d(s), J6(0) = 1, and

(2.79) J6(t) ≤ Y6(t), ∀t ∈ I.
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Differentiating Y6(t), and using (2.78) and (2.79), leads to

dY6(t)

dt
=
dJ6(t)

dt
+ g(t)J6(t) ≤ f(t)n[p−1](t)Y p

6 (t) + g(t)Y6(t), ∀t ∈ I,

which implies the estimation for Y6(t), such that

(2.80) Y p
6 (t) ≤ k7(t), ∀t ∈ I,

where k7(t) is as given in (2.75), thus from (2.80) in (2.78), we have

dJ6(t)

dt
≤ f(t)n[p−1](t)k7(t), ∀t ∈ I,

the above inequality implies the following estimation for J6(t)

(2.81) J6(t) ≤ 1 +

∫ t

0

f(s)k7(s)n
[p−1]ds, ∀t ∈ I.

Using (2.81) in (2.77), we get

(2.82) m(t) ≤ 1 +

∫ t

0

f(s)k7(s)n
[p−1]ds, ∀t ∈ I.

We get the desired bound in (2.74) from (2.76) and (2.82). the proof is complete.2

If we put p = 1
2 in Theorem 2.9, we can easily drive the following corollary:

Corollary 2.3. Let x(t) be a real-valued positive continuous function and f(t),
g(t) are non-negative real-valued continuous functions defined on I = [0,∞), and
n(t) be a positive monotonic non-decreasing continuous function on I = [0,∞) and
satisfy the inequality

x(t) ≤ n(t) +

∫ t

0

f(s)

√
x(s) +

∫ s

0

g(λ)x(λ)dλ ds,

for all t ∈ I. Then

x(t) ≤ n(t)

[
1 +

∫ t

0

f(s)k8(s)√
n(s)

]
, ∀t ∈ I,

where

k8(t) ≤ exp

(
1

4

∫ t

0

g(s)ds

)
×
[
1 +

1

2

∫
f(s)√
n(s)

exp

(
−1

2

∫ s

0

g(λ)dλ

)
ds

]
, ∀t ∈ I.
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Theorem 2.10. Let x(t) be a real-valued positive continuous function and f(t),
g(t) are non-negative real-valued continuous functions defined on I = [0,∞), and
n(t) be a positive monotonic non-decreasing continuous function on I = [0,∞) and
satisfy the inequality

(2.83) x(t) ≤ n(t) +

∫ t

0

f(s)

[
x(s) +

∫ s

0

g(λ)xp(λ)dλ

]p
ds,

for all t ∈ I, where p > 1. Then

(2.84) x(t) ≤ n(t)

[
1 +

∫ t

0

f(s)k9(s)n
[p−1](s)

]
, ∀t ∈ I,

where

(2.85) k9(t) ≤
[
1 + (1− p)

∫ t

0

[f(s)n[p−1](s) + g(s)n(s)]ds

][ p
1−p ]

, ∀t ∈ I.

Proof. Since n(t) is a positive monotonic nondecreasing function, we observe from
(2.83)[

x(t)

n(t)

]
≤ 1 +

∫ t

0

f(s)n[p−1](s)

[(
x(s)

n(s)

)
+

∫ t

0

g(λ)n[p−1](λ)

(
x(λ)

n(λ)

)p

dλ

]p
ds,

for all t ∈ I.
Let

(2.86) m(t) =
x(t)

n(t)
, m(0) ≤ 1, ∀t ∈ I.

Hence

m(t) ≤ 1 +

∫ t

0

f(s)n[p−1](s)

[
m(t) +

∫ t

0

g(λ)n[p−1](λ)mp(λ)

]p
ds, ∀t ∈ I.

Let

J7(t) = 1 +

∫ t

0

f(s)n[p−1](s)

[
m(t) +

∫ t

0

g(λ)n[p−1](λ)mp(λ)

]p
ds, ∀t ∈ I,

we can easily obtain J7(0) = 1, and

(2.87) m(t) ≤ J7(t), ∀t ∈ I.

Differentiating J7(t), gives

(2.88)
dJ7(t)

dt
≤ f(t)n[p−1](t)Y p

7 (t), ∀t ∈ I,
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where Y7(t) = J7(t) +
∫ t

0
g(s)n[p−1](s)Y p

7 (s)d(s), Y7(0) = J7(0) = 1, and

(2.89) J7(t) ≤ Y7(t), ∀t ∈ I.

Differentiating Y7(t), and using (2.88) and (2.89), leads to

dY7(t)

dt
≤ [f(t)n[p−1](t) + g(t)n(t)]Y p

7 (t), ∀t ∈ I,

which implies the estimation for Y7(t), such that

(2.90) Y p
7 (t) ≤ k9(t), ∀t ∈ I,

where k9(t) is as given in (2.85), thus from (2.90) in (2.88), we get

dJ7(t)

dt
≤ f(t)n[p−1](t)k9(t), ∀t ∈ I,

which implies the estimation for J7(t)

(2.91) J7(t) ≤ 1 +

∫ t

0

f(s)k9(s)n
[p−1](s)ds, ∀t ∈ I.

Using (2.91) in (2.87) we get

(2.92) m(t) ≤ 1 +

∫ t

0

f(s)k9(s)n
[p−1]ds, ∀t ∈ I.

The desired bound in (2.84) follows from (2.86) and (2.92).
The proof is complete. 2

3. Some Applications

In this section, we present some applications of the above results in order to
illustrate the usefulness of this work. For instance, let us introduce some applica-
tions of the inequalities obtained in Theorems 2.2 and Theorem 2.3 in studying the
boundedness and asymptotic behaviour of the solutions of nonlinear integral and
integrodifferential equations.

We present the following example, as an application of the inequality obtained
in Theorem 2.2:

Example 3.1. We discuss the boundedness and asymptotic behaviour of the solu-
tion of nonlinear integral equation of the form

(3.1) xp(t) = g(t) +

∫ t

0

K(t, s)H(s, x(s))ds, ∀t ∈ I = [0,∞),

where p as defined in Theorem 2.2, g(t) is a positive real-valued continuous function
defined on I and K, H are non-decreasing real-valued continuous functions defined
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on I × I. Here we assume that every solution x(t) of (3.1) under discussion exists
on I.
We list the following hypotheses on the functions g, K and H involved in (3.1):

(3.2) |g(t)| ≤ np(t); |K(t, s)| ≤ 1; |H(t, x(t))| ≤ f(t)|xp(t)|+ h(t)|xq(t)|,

(3.3) |g(t)| ≤ np(t)e−pt; |K(t, s)| ≤ e−pt; |H(t, x(t))| ≤ f(t)|xp(t)|+ h(t)|xq(t)|,

y1(t)n(t)

×
[
1 + p1

∫ t

0

h(s)n−[p−q](s) exp

(
−p1

∫ s

0

f(λ)dλ

)
ds

][ 1
p−q ]

<∞,

(3.4)

y2(t)n(t)

×
[
1 + p1

∫ t

0

e−qsh(s)n−[p−q](s) exp

(
−p1

∫ s

0

e−pλf(λ)dλ

)
ds

][ 1
p−q ]

<∞,

(3.5)

for all t ∈ I, where y1(t) = exp

(
1
p

∫ t

0
f(s)ds

)
, y2(t) = exp

(
1
p

∫ t

0
epsf(s)ds

)
,

p1 = p−q
p and x0, q, f(t), h(t) as defined in Theorem 2.2.

Suppose that the hypotheses (3.2) and (3.4) are satisfied, and let x(t), t ∈ I be a
solution of (3.1). Then from (3.1) and (3.2) we have

|xp(t)| ≤ np(t) +

∫ t

0

f(s)|xp(s)|ds+
∫ t

0

h(s)|xq(s)|ds, ∀t ∈ I.

Now, a suitable application of the inequality given in Theorem 2.2 to yields

|xp(t)| ≤y1(t)n(t)

×
[
1 + p1

∫ t

0

h(s)n−[p−q](s) exp

(
−p1

∫ s

0

f(λ)dλ

)
ds

][ 1
p−q ]

<∞,

(3.6)

for all t ∈ I thus, from the hypotheses (3.4) and the estimation in (3.6) implies the
boundedness of solution x(t) of (3.1).
We now consider the (3.1) and the hypotheses (3.3) and (3.5), and let x(t), t ∈ I
be a solution of (3.1). Then from (3.1) and using (3.3) it is easily to observe that

(3.7) [et|x(t)|]p ≤ np(t) +

∫ t

0

e−spf(s)[es|xp(s)|]pds+
∫ t

0

e−sqh(s)[es|xq(s)|]qds,

for all t ∈ I. Now, a suitable application of the inequality given in Theorem 2.2 to
(3.7) yields:

et|x(t)| ≤y2(t)n(t)

×
[
1 + p1

∫ t

0

e−qsh(s)n−[p−q](s) exp

(
−p1

∫ s

0

e−pλf(λ)dλ

)
ds

][ 1
p−q ]

,

(3.8)
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for all t ∈ I thus, from (3.5) and (3.8) we observe that

(3.9) |x(t)| ≤ αe−t, ∀t ∈ I,

where α ≥ 0 is constant. From (3.9) we see that the solution x(t) approaches zero
as t→ ∞.

Remark 3.1. In [1], Abdeldaim and Yakout taking |g(t)| ≤ x0, where x0 is a
constant. But in the above example we taking |g(t)| ≤ np(t) where n(t) is a function
which is a generalization.

As an application of the inequality given in Theorem 2.3 we present the following
example :

Example 3.2. We discuss the boundedness of the solution of a nonlinear intgrod-
ifferential equation of the form:

(3.10) px[p−1](t)
dx(t)

dt
= F (t, x(t), y(t),

∫ t

0

K(s, x(s))ds), x(0) = x0,

for all t ∈ I, where p, x0 as defined in Theorem 2.3, and y(t), F , K be a nonde-
creasing real-valued continuous functions defined on I × I. Here we assume that
every solution x(t) of (3.10) under discussion exists on I.
We list the following hypotheses on the functions y(t), H, K involved in (3.10):

(3.11) |y(t)| ≤ f(t); |K(t, x(t))| ≤ g(t)x(t),

(3.12) |F (t, x(t), y(t),
∫ t

0

K(s, x(s))ds)| ≤ |y(t)|[|xq(t)|+
∫ t

0

|K(s, x(s))|ds],

(3.13)

[
x0 +

∫ t

0

f(s)k10(s) exp

(∫ s

0

g(λ)dλ

)
ds

] 1
p

<∞,

where

(3.14) k10(t) =

[
x
q[p−q]
0 +

[
q[p− q]

p

] ∫ t

0

f(s) exp

(
−[p− q]

∫ s

0

g(λ)dλ

)
ds

][ 1
p−q ]

,

for all t ∈ I, where f(t) as defined in Theorem 2.3.
By taking t = s in (3.10) and integrating from 0 to t we have

(3.15) xp(t) = xp0 +

∫ t

0

[F (s, x(s), y(s),

∫ s

0

K(λ, x(λ))dλ)]ds.
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Suppose that the hypotheses (3.11) and (3.12) are satisfied and from (3.15), it is
easily to see that the solution x(t) satisfies the equivalent integral equation

(3.16) |xp(t)| ≤ xp0 +

∫ t

0

f(s)

[
|xq(s)|+

∫ s

0

g(λ)|x(λ)|dλ
]
ds.

Now, a suitable application of the inequality given in Theorem 2.3 to (3.16) yields

(3.17) x(t) ≤
[
x0 +

∫ t

0

f(s)k10(s) exp

(∫ s

0

g(λ)dλ

)
ds

] 1
p

, ∀t ∈ I,

where k10(t) as defined in (3.14) thus, from the hypotheses (3.13) and the estimation
in (3.17) implies the boundedness of the solution x(t) of (3.10).
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