Uniqueness and Value-Sharing of Meromorphic Functions

Harina P. Waghamore and A. Tanuja*
Department of Mathematics, Central College Campus, Bangalore University, Bangalore560 001, India
e-mail: pree.tam@rediffmail.com and a.tanuja1@gmail.com

AbStract. In this paper, we prove two uniqueness theorem on meromorphic functions sharing one value which generalize a recent result of R. S. Dyavanal [2], and on the other hand, we relax the nature of sharing value from CM to IM.

1. Introduction

In this section, let f be a non-constant meromorphic function in the whole complex plane. We shall use the following standard notations of the value distribution theory:

$$
T(r, f), \quad m(r, f), \quad N(r, f), \quad \bar{N}(r, f), \ldots
$$

(See Hayman [3], Yang [5] and Yi and Yang [6]). We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow+\infty$, possibly outside of a set with finite measure. For any constant ' a^{\prime}, we define

$$
\Theta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{(f-a)}\right)}{T(r, f)}
$$

Let ' a ' be a finite complex number and k a positive integer. We denote by $N_{k)}\left(r, \frac{1}{(f-a)}\right)$ the counting function for the zeros of $f(z)-a$ with the multiplicity $\leq k$, and by $\bar{N}_{k)}\left(r, \frac{1}{(f-a)}\right)$ the corresponding one for which the multiplicity is not counted. Let $N_{(k}\left(r, \frac{1}{(f-a)}\right)$ be the counting function for the zeros of $f(z)-a$ with multiplicity atleast k, and $\bar{N}_{(k}\left(r, \frac{1}{(f-a)}\right)$ be the corresponding one for which the multiplicity is not counted. Set

[^0]$$
N_{k}\left(r, \frac{1}{(f-a)}\right)=\bar{N}\left(r, \frac{1}{(f-a)}\right)+\bar{N}_{(2}\left(r, \frac{1}{(f-a)}\right)+\ldots .+\bar{N}_{(k}\left(r, \frac{1}{(f-a)}\right) .
$$

We define

$$
\delta_{k}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}_{k}\left(r, \frac{1}{(f-a)}\right)}{T(r, f)} .
$$

Let $g(z)$ be a meromorphic function. If $f(z)-a$ and $g(z)-a$, assume the same zeros with the same multiplicities then we say that $f(z)$ and $g(z)$ share the value ' a ' CM, where ' a ' is a complex number. Similarly, we say that $f(z)$ and $g(z)$ share $a \mathrm{IM}$, provided that $f(z)-a$ and $g(z)-a$ have same multiplicities.

Recently, R. S. Dyavanal [2] proved the following theorems.
Theorem A.([2]) Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $n \geq 2$ be an integer satisfying $(n+1) s \geq 12$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value $1 C M$, then either $f=d g$, for some $(n+1)$-th root of unity d or $g(z)=c_{1} e^{c z}$ and $f(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Theorem B.([2]) Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 10$. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM, then

$$
g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, \quad f=\frac{(n+2)\left(1-h^{n+1}\right) h}{(n+1)\left(1-h^{n+2}\right)}
$$

where h is a non-constant meromorphic function.
Theorem C.([2]) Let f and g be two transcendental entire functions, whose zeros are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 7$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value $1 C M$, then either $f=d g$, for some $(n+1)$-th root of unity d or $g(z)=c_{1} e^{c z}$ and $f(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Theorem D.([2]) Let f and g be two transcendental entire functions, whose zeros are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 5$. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value $1 C M$, then $f \equiv g$.

From the above results we can ask whether there exists a corresponding unicity theorem for $\left[f^{n} P(f)\right]^{(k)}$ where $P(f)$ is a polynomial. In this paper, we give a positive answer to above question by proving the following Theorems.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
$P(f)=a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>4 k+12$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value $1 C M$, then either $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots n+m-i, \ldots n)$, $a_{m-i} \neq 0$ for some $i=0,1 \ldots m$, or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right)-\omega_{2}^{n} P\left(\omega_{2}\right)$.

Corollary 1. Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=$ $a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>2 k+6$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 CM , then the conclusions of Theorem 1.1 hold.

Theorem 1.2. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>9 k+16$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value $1 I M$, then either $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots n+m-i, \ldots n)$, $a_{m-i} \neq 0$ for some $i=0,1 \ldots m$, or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right)-\omega_{2}^{n} P\left(\omega_{2}\right)$.

Corollary 2. Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=$ $a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>5 k+9$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 IM , then the conclusions of Theorem 1.2 hold.

Remark 1.1. In Theorem 1.1 giving specific values for s in Theorem 1.1, we get the following interesting cases:
(i) If $s=1$, then $n>4 k+12-m$.
(ii) If $s=2$, then $n>2 k+6-m$.
(iii) If $s=3$, then $n>\frac{4}{3} k+4-m$.

We conclude that if f and g have zeros and poles of higher order multiplicity, then we can reduce the value of n.

2. Some Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1.([3]) Let f be a non-constant meromorphic function, let k be a positive integer, and let c be a non-zero finite complex number. Then

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-c}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts those points such that $f^{(k+1)}=0$ but $f\left(f^{(k)}-c\right) \neq 0$.

Lemma 2.2.([1]) Let f and g be two meromorphic functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 CM and

$$
\begin{aligned}
\Delta & =\left[(k+2) \Theta(\infty, f)+2 \Theta(\infty, g)+\Theta(0, f)+\Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)\right] \\
& >k+7
\end{aligned}
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
Lemma 2.3.([4]) Let f and g be two meromorphic functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 IM and

$$
\begin{align*}
\Delta= & {[(2 k+3) \Theta(\infty, f)+(2 k+4) \Theta(\infty, g)+\Theta(0, f)} \tag{1.1}\\
& \left.+\Theta(0, g)+2 \delta_{k+1}(0, f)+3 \delta_{k+1}(0, g)\right] \\
> & 4 k+13
\end{align*}
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
Lemma 2.4. Let f and g be two non-constant meromorphic functions, and let $n(\geq 1), k(\geq 1)$ and $m(\geq 1)$ be a integers. Then

$$
\left[f^{n} P(f)\right]^{(k)}\left[g^{n} P(g)\right]^{(k)} \neq 1 .
$$

Proof. Let

$$
\begin{equation*}
\left[f^{n} P(f)\right]^{(k)}\left[g^{n} P(g)\right]^{(k)} \equiv 1 \tag{1.2}
\end{equation*}
$$

Let z_{0} be a zero of f of order p_{0}. From (2.1) we get z_{0} is a pole of g. Suppose that z_{0} is a pole of g of order q_{0}. Again by (2.1), we obtain $n p_{0}-k=n q_{0}+m q_{0}+k$, i.e., $n\left(p_{0}-q_{0}\right)=m q_{0}+2 k$. which implies that $q_{0} \geq \frac{n-2 k}{m}$ and so we have $p_{0} \geq \frac{n+m-2 k}{m}$.

Let z_{1} be a zero of $f-1$ of order p_{1}, then z_{1} is a zero of $\left[f^{n} P(f)\right]^{(k)}$ of order $p_{1}-k$. Therefore from (2.1) we obtain $p_{1}-k=n q_{1}+m q_{1}+k$ i.e., $p_{1} \geq(n+m) s+2 k$.

Let z_{2} be a zero of f^{\prime} of order p_{2} that is not a zero of $f P(f)$, then from (2.1) z_{2} is a pole of g of order q_{2}. Again by (2.1) we get $p_{2}-(k-1)=n q_{2}+m q_{2}+k$ i.e., $p_{2} \geq(n+m) s+2 k-1$.

In the same manner as above, we have similar results for the zeros of $\left[g^{n} P(g)\right]^{(k)}$.
On other hand, suppose that z_{3} is a pole of f. From (2.1), we get that z_{3} is the zero of $\left[g^{n} P(g)\right]^{(k)}$.

Thus
(1.3)

$$
\begin{aligned}
\bar{N}(r, f) & \leq \bar{N}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g-1}\right)+\bar{N}\left(r, \frac{1}{g^{\prime}}\right) \\
& \leq \frac{1}{p_{0}} N\left(r, \frac{1}{g}\right)+\frac{1}{p_{1}} N\left(r, \frac{1}{g-1}\right)+\frac{1}{p_{2}} N\left(r, \frac{1}{g^{\prime}}\right) \\
& \leq\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}+\frac{2}{(n+m) s+2 k-1}\right] T(r, g)+S(r, g)
\end{aligned}
$$

By second fundamental theorem and equation (2.2), we have

$$
\begin{aligned}
T(r, f) \leq & \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)+\bar{N}(r, f) \\
\leq & \frac{m}{n+m-2 k} N\left(r, \frac{1}{f}\right)+\frac{1}{(n+m) s+2 k} N\left(r, \frac{1}{f-1}\right) \\
+ & {\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}+\frac{2}{(n+m) s+2 k-1}\right] T(r, g) } \\
& +S(r, g)+S(r, f) .
\end{aligned}
$$

$$
\begin{align*}
T(r, f) & \leq\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}\right] T(r, f) \tag{1.4}\\
& +\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}+\frac{2}{(n+m) s+2 k-1}\right] T(r, g) \\
& +S(r, g)+S(r, f)
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
T(r, g) & \leq\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}\right] T(r, g) \tag{1.5}\\
& +\left[\frac{m}{n+m-2 k}+\frac{1}{(n+m) s+2 k}+\frac{2}{(n+m) s+2 k-1}\right] T(r, f) \\
& +S(r, g)+S(r, f)
\end{align*}
$$

Adding (2.3) and (2.4) we get

$$
\begin{aligned}
& T(r, f)+T(r, g) \\
& \leq\left[\frac{2 m}{n+m-2 k}+\frac{2}{(n+m) s+2 k}+\frac{2}{(n+m) s+2 k-1}\right]\{T(r, f)+T(r, g)\} \\
& +S(r, g)+S(r, f)
\end{aligned}
$$

which is a contradiction. Thus Lemma proved.

3. Proofs of the Theorems

Proof of Theorem 1.1.

Let $F=f^{n} P(f)$ and $G=g^{n} P(g)$ then $[F]^{(k)}$ and $[G]^{(k)}$ share 1CM. We have $\Delta=\left[(k+2) \Theta(\infty, F)+2 \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)+\delta_{k+1}(0, F)+\delta_{k+1}(0, G)\right]$

Consider
$\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{f^{n} P(f)}\right) \leq \frac{2}{s(n+m)} N\left(r, \frac{1}{F}\right) \leq \frac{2}{s(n+m)}[T(r, F)+O(1)]$.

$$
\begin{equation*}
\Theta(0, F)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F}\right)}{T(r, F)} \geq 1-\frac{2}{s(n+m)} \tag{1.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\Theta(0, G) \geq 1-\frac{2}{s(n+m)} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\Theta(\infty, F)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{T(r, F)} \geq 1-\frac{1}{s(n+m)} \tag{1.8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\Theta(\infty, G) \geq 1-\frac{1}{s(n+m)} \tag{1.9}
\end{equation*}
$$

Consider

$$
\begin{aligned}
N_{k+1}\left(r, \frac{1}{F}\right) & =N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)=(k+1) \bar{N}\left(r, \frac{1}{f^{n} P(f)}\right) \\
& \leq \frac{(k+1)}{s(n+m)}[T(r, F)+O(1)]
\end{aligned}
$$

Next, we have

$$
\begin{equation*}
\delta_{k+1}(0, F)=1-\limsup _{r \rightarrow \infty} \frac{N_{k+1}\left(r, \frac{1}{F}\right)}{T(r, F)} \geq 1-\frac{(k+1)}{s(n+m)} . \tag{1.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\delta_{k+1}(0, G) \geq 1-\frac{(k+1)}{s(n+m)} \tag{1.11}
\end{equation*}
$$

From (2.5) to (2.10), we get

$$
\Delta \geq(k+4)\left(1-\frac{2}{s(n+m)}\right)+2\left(1-\frac{1}{s(n+m)}\right)+2\left(1-\frac{(k+1)}{s(n+m)}\right) .
$$

Since $s(n+m)>4 k+12$, we get $\Delta>k+7$.
Therefore, by Lemma 2.2, we deduce that either $F^{(k)} G^{(k)} \equiv 1$ or $F \equiv G$.
If $F^{(k)} G^{(k)} \equiv 1$, that is

$$
\begin{align*}
& {\left[f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\cdots+a_{1} f+a_{0}\right)\right]^{(k)}} \tag{1.12}\\
& \cdot\left[g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\cdots+a_{1} g+a_{0}\right)\right]^{(k)} \equiv 1
\end{align*}
$$

then by Lemma 2.4 we can get a contradiction.
Hence, we deduce that $F \equiv G$, that is
(1.13)
$f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0}\right)=g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\ldots+a_{1} g+a_{0}\right)$.
Let $h=\frac{f}{g}$. If h is a constant, then substituting $f=g h$ in (2.12) we obtain

$$
a_{m} g^{n+m}\left(h^{n+m}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m-1}-1\right)+\ldots+a_{0} g^{n}\left(h^{n}-1\right)=0,
$$

which implies $h^{d}=1$, where $d=(n+m, \ldots, n+m-i, \ldots n), a_{m-1} \neq 0$ for some $i=0,1, \ldots m$. Thus $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=(n+$ $m, \ldots, n+m-i, \ldots n), a_{m-i} \neq 0$ for some $i=0,1, \ldots m$.

If h is not a constant, then we know (2.12) that f and g satisfy the algebraic equation $R(f, g)=0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right)-\omega_{2}^{n} P\left(\omega_{2}\right)$.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.

Let $F=f^{n} P(f)$ and $G=g^{n} P(g)$ then $[F]^{(k)}$ and $[G]^{(k)}$ share 1IM. We have

$$
\begin{aligned}
\Delta= & {[(2 k+3) \Theta(\infty, F)+(2 k+4) \Theta(\infty, G)+\Theta(0, F)+\Theta(0, G)} \\
& \left.+2 \delta_{k+1}(0, F)+3 \delta_{k+1}(0, G)\right]
\end{aligned}
$$

Consider
$\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{f^{n} P(f)}\right) \leq \frac{2}{s(n+m)} N\left(r, \frac{1}{F}\right) \leq \frac{2}{s(n+m)}[T(r, F)+O(1)]$.

$$
\begin{equation*}
\Theta(0, F)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{F}\right)}{T(r, F)} \geq 1-\frac{2}{s(n+m)} . \tag{1.14}
\end{equation*}
$$

Similarly,

$$
\begin{gather*}
\Theta(0, G) \geq 1-\frac{2}{s(n+m)} \tag{1.15}\\
\Theta(\infty, F)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, F)}{T(r, F)} \geq 1-\frac{1}{s(n+m)} . \tag{1.16}
\end{gather*}
$$

Similarly,

$$
\begin{equation*}
\Theta(\infty, G) \geq 1-\frac{1}{s(n+m)} \tag{1.17}
\end{equation*}
$$

Consider

$$
\begin{aligned}
N_{k+1}\left(r, \frac{1}{F}\right) & =N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)=(k+1) \bar{N}\left(r, \frac{1}{f^{n} P(f)}\right) \\
& \leq \frac{(k+1)}{s(n+m)}[T(r, F)+O(1)]
\end{aligned}
$$

Next, we have

$$
\begin{equation*}
\delta_{k+1}(0, F)=1-\limsup _{r \rightarrow \infty} \frac{N_{k+1}\left(r, \frac{1}{F}\right)}{T(r, F)} \geq 1-\frac{(k+1)}{s(n+m)} . \tag{1.18}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\delta_{k+1}(0, G) \geq 1-\frac{(k+1)}{s(n+m)} \tag{1.19}
\end{equation*}
$$

From (2.13) to (2.18), we get

$$
\Delta \geq 2\left(1-\frac{2}{s(n+m)}\right)+(4 k+7)\left(1-\frac{1}{s(n+m)}\right)+5\left(1-\frac{(k+1)}{s(n+m)}\right) .
$$

Since $s(n+m)>9 k+16$, we get $\Delta>4 k+13$.
Now proceeding as in Theorem 1.1 we can prove the Theorem 1.2. This completes the proof of Theorem 1.2.

References

[1] S. S. Bhoosnurmath and R. S. Dyavanal, Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl., 53(2007), 1191-1205.
[2] R. S. Dyavanal, Uniqueness and value-sharing of differential polynomials of meromorphic functions, J. Math. Anal. Appl., 374(2011), 335-345.
[3] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[4] P. Sahoo, Uniqueness of meromorphic functions when two differential polynomials share one value IM, Mat. Bech., 62(2)(2010), 169-182.
[5] L. Yang, Value Distribution Theory, Springer Verlag, Berlin, 1993.
[6] H. X. Yi, C. C. Yang, Unicity Theory of Meromorphic Functions, Science Press, Beijing, 1995.

[^0]: * Corresponding Author.

 Received April 22, 2011; accepted March 27, 2013.
 2010 Mathematics Subject Classification: 30D35.
 Key words and phrases: Value distribution theory, Sharing value, Entire functions, Meromorphic functions, Differential polynomials, Uniqueness.

