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Abstract. In this paper, we prove two uniqueness theorem on meromorphic functions

sharing one value which generalize a recent result of R. S. Dyavanal [2], and on the other

hand, we relax the nature of sharing value from CM to IM.

1. Introduction

In this section, let f be a non-constant meromorphic function in the whole com-
plex plane. We shall use the following standard notations of the value distribution
theory:

T (r, f), m(r, f), N(r, f), N(r, f), ...

(See Hayman [3], Yang [5] and Yi and Yang [6]). We denote by S(r, f) any quantity
satisfying S(r, f) = o(T (r, f)), as r → +∞, possibly outside of a set with finite
measure. For any constant ′a′, we define

Θ(a, f) = 1− lim sup
r→∞

N
(
r, 1

(f−a)

)

T (r, f)
.

Let ′a′ be a finite complex number and k a positive integer. We denote by
Nk)

(
r, 1

(f−a)

)
the counting function for the zeros of f(z)− a with the multiplicity

≤ k, and by Nk)

(
r, 1

(f−a)

)
the corresponding one for which the multiplicity is not

counted. Let N(k

(
r, 1

(f−a)

)
be the counting function for the zeros of f(z)− a with

multiplicity atleast k, and N (k

(
r, 1

(f−a)

)
be the corresponding one for which the

multiplicity is not counted. Set
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Nk

(
r, 1

(f−a)

)
= N

(
r, 1

(f−a)

)
+ N (2

(
r, 1

(f−a)

)
+ .... + N (k

(
r, 1

(f−a)

)
.

We define

δk(a, f) = 1− lim sup
r→∞

Nk

(
r, 1

(f−a)

)

T (r, f)
.

Let g(z) be a meromorphic function. If f(z)− a and g(z)− a, assume the same
zeros with the same multiplicities then we say that f(z) and g(z) share the value
′a′ CM, where ′a′ is a complex number. Similarly, we say that f(z) and g(z) share
a IM, provided that f(z)− a and g(z)− a have same multiplicities.

Recently, R. S. Dyavanal [2] proved the following theorems.

Theorem A.([2]) Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n ≥ 2
be an integer satisfying (n + 1)s ≥ 12. If fnf ′ and gng′ share the value 1 CM, then
either f = dg, for some (n+1)-th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz

where c1, c2 and c are constants satisfying (c1c2)n+1c2 = −1.

Theorem B.([2]) Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n be
an integer satisfying (n− 2)s ≥ 10. If fn(f − 1)f ′ and gn(g − 1)g′ share the value
1 CM, then

g =
(n + 2)(1− hn+1)
(n + 1)(1− hn+2)

, f =
(n + 2)(1− hn+1)h
(n + 1)(1− hn+2)

where h is a non-constant meromorphic function.

Theorem C.([2]) Let f and g be two transcendental entire functions, whose zeros
are of multiplicities atleast s, where s is a positive integer. Let n be an integer
satisfying (n− 2)s ≥ 7. If fnf ′ and gng′ share the value 1 CM, then either f = dg,
for some (n + 1)-th root of unity d or g(z) = c1e

cz and f(z) = c2e
−cz, where c1, c2

and c are constants satisfying (c1c2)n+1c2 = −1.

Theorem D.([2]) Let f and g be two transcendental entire functions, whose zeros
are of multiplicities atleast s, where s is a positive integer. Let n be an integer
satisfying (n− 2)s ≥ 5. If fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then
f ≡ g.

From the above results we can ask whether there exists a corresponding unicity
theorem for [fnP (f)](k) where P (f) is a polynomial. In this paper, we give a
positive answer to above question by proving the following Theorems.

Theorem 1.1. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
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P (f) = amfm + am−1f
m−1 + ... + a1f + a0, (am 6= 0), and ai(i = 0, 1, ..., m) is

the first nonzero coefficient from the right, and let n, k, m be three positive integers
with s(n+m) > 4k +12. If [fnP (f)](k) and [gnP (g)](k) share the value 1 CM, then
either f ≡ tg for a constant t such that td = 1, where d = (n + m, ...n + m− i, ...n),
am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R(ω1, ω2) = ωn

1 P (ω1)− ωn
2 P (ω2).

Corollary 1. Let f and g be two non-constant entire functions, whose zeros and
poles are of multiplicities atleast s, where s is a positive integer. Let P (f) =
amfm + am−1f

m−1 + ... + a1f + a0, (am 6= 0), and ai(i = 0, 1, ..., m) is the first
nonzero coefficient from the right, and let n, k, m be three positive integers with
s(n + m) > 2k + 6. If [fnP (f)](k) and [gnP (g)](k) share the value 1 CM, then the
conclusions of Theorem 1.1 hold.

Theorem 1.2. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
P (f) = amfm + am−1f

m−1 + ... + a1f + a0, (am 6= 0), and ai(i = 0, 1, ..., m) is
the first nonzero coefficient from the right, and let n, k, m be three positive integers
with s(n + m) > 9k + 16. If [fnP (f)](k) and [gnP (g)](k) share the value 1 IM, then
either f ≡ tg for a constant t such that td = 1, where d = (n + m, ...n + m− i, ...n),
am−i 6= 0 for some i = 0, 1...m, or f and g satisfy the algebraic equation R(f, g) ≡ 0,
where R(ω1, ω2) = ωn

1 P (ω1)− ωn
2 P (ω2).

Corollary 2. Let f and g be two non-constant entire functions, whose zeros and
poles are of multiplicities atleast s, where s is a positive integer. Let P (f) =
amfm + am−1f

m−1 + ... + a1f + a0, (am 6= 0), and ai(i = 0, 1, ..., m) is the first
nonzero coefficient from the right, and let n, k, m be three positive integers with
s(n + m) > 5k + 9. If [fnP (f)](k) and [gnP (g)](k) share the value 1 IM, then the
conclusions of Theorem 1.2 hold.

Remark 1.1. In Theorem 1.1 giving specific values for s in Theorem 1.1, we get
the following interesting cases:

(i) If s = 1, then n > 4k + 12−m.

(ii) If s = 2, then n > 2k + 6−m.

(iii) If s = 3, then n > 4
3k + 4−m.

We conclude that if f and g have zeros and poles of higher order multiplicity,
then we can reduce the value of n.

2. Some Lemmas

In this section we present some lemmas which will be needed in the sequel.
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Lemma 2.1.([3]) Let f be a non-constant meromorphic function, let k be a positive
integer, and let c be a non-zero finite complex number. Then

T (r, f) ≤ N(r, f) + N

(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
−N

(
r,

1
f (k+1)

)
+ S(r, f)

≤ N(r, f) + Nk+1

(
r,

1
f

)
+ N

(
r,

1
f (k) − c

)
−N0

(
r,

1
f (k+1)

)
+ S(r, f).

where N0

(
r, 1

f(k+1)

)
is the counting function which only counts those points such

that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 2.2.([1]) Let f and g be two meromorphic functions, and let k be a positive
integer. If f (k) and g(k) share the value 1 CM and

∆ = [(k + 2)Θ(∞, f) + 2Θ(∞, g) + Θ(0, f) + Θ(0, g) + δk+1(0, f) + δk+1(0, g)]
> k + 7

then either f (k)g(k) ≡ 1 or f ≡ g.

Lemma 2.3.([4]) Let f and g be two meromorphic functions, and let k be a positive
integer. If f (k) and g(k) share the value 1 IM and

∆ =[(2k + 3)Θ(∞, f) + (2k + 4)Θ(∞, g) + Θ(0, f)
+ Θ(0, g) + 2δk+1(0, f) + 3δk+1(0, g)]

>4k + 13

(1.1)

then either f (k)g(k) ≡ 1 or f ≡ g.

Lemma 2.4. Let f and g be two non-constant meromorphic functions, and let
n(≥ 1), k(≥ 1) and m(≥ 1) be a integers. Then

[fnP (f)](k)[gnP (g)](k) 6= 1.

Proof. Let

(1.2) [fnP (f)](k)[gnP (g)](k) ≡ 1.

Let z0 be a zero of f of order p0. From (2.1) we get z0 is a pole of g. Suppose that
z0 is a pole of g of order q0. Again by (2.1), we obtain np0−k = nq0 +mq0 +k, i.e.,
n(p0− q0) = mq0 +2k. which implies that q0 ≥ n−2k

m and so we have p0 ≥ n+m−2k
m .

Let z1 be a zero of f − 1 of order p1, then z1 is a zero of [fnP (f)](k) of order
p1−k. Therefore from (2.1) we obtain p1−k = nq1+mq1+k i.e., p1 ≥ (n+m)s+2k.

Let z2 be a zero of f ′ of order p2 that is not a zero of fP (f), then from (2.1)
z2 is a pole of g of order q2. Again by (2.1) we get p2 − (k − 1) = nq2 + mq2 + k
i.e., p2 ≥ (n + m)s + 2k − 1.
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In the same manner as above, we have similar results for the zeros of [gnP (g)](k).
On other hand, suppose that z3 is a pole of f . From (2.1), we get that z3 is the

zero of [gnP (g)](k).

Thus

N(r, f) ≤ N

(
r,

1
g

)
+ N

(
r,

1
g − 1

)
+ N

(
r,

1
g′

)

≤ 1
p0

N

(
r,

1
g

)
+

1
p1

N

(
r,

1
g − 1

)
+

1
p2

N

(
r,

1
g′

)

≤
[

m

n + m− 2k
+

1
(n + m)s + 2k

+
2

(n + m)s + 2k − 1

]
T (r, g) + S(r, g).

(1.3)

By second fundamental theorem and equation (2.2), we have

T (r, f) ≤ N

(
r,

1
f

)
+ N

(
r,

1
f − 1

)
+ N(r, f)

≤ m

n + m− 2k
N

(
r,

1
f

)
+

1
(n + m)s + 2k

N

(
r,

1
f − 1

)

+
[

m

n + m− 2k
+

1
(n + m)s + 2k

+
2

(n + m)s + 2k − 1

]
T (r, g)

+S(r, g) + S(r, f).

T (r, f) ≤
[

m

n + m− 2k
+

1
(n + m)s + 2k

]
T (r, f)

+
[

m

n + m− 2k
+

1
(n + m)s + 2k

+
2

(n + m)s + 2k − 1

]
T (r, g)

+ S(r, g) + S(r, f).

(1.4)

Similarly, we have

T (r, g) ≤
[

m

n + m− 2k
+

1
(n + m)s + 2k

]
T (r, g)

+
[

m

n + m− 2k
+

1
(n + m)s + 2k

+
2

(n + m)s + 2k − 1

]
T (r, f)

+ S(r, g) + S(r, f).

(1.5)

Adding (2.3) and (2.4) we get

T (r, f) + T (r, g)

≤
[

2m

n + m− 2k
+

2
(n + m)s + 2k

+
2

(n + m)s + 2k − 1

]
{T (r, f) + T (r, g)}

+S(r, g) + S(r, f).
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which is a contradiction. Thus Lemma proved. 2

3. Proofs of the Theorems

Proof of Theorem 1.1.

Let F = fnP (f) and G = gnP (g) then [F ](k) and [G](k) share 1CM. We have

∆ = [(k + 2)Θ(∞, F ) + 2Θ(∞, G) + Θ(0, F ) + Θ(0, G) + δk+1(0, F ) + δk+1(0, G)]

Consider

N

(
r,

1
F

)
= N

(
r,

1
fnP (f)

)
≤ 2

s(n + m)
N

(
r,

1
F

)
≤ 2

s(n + m)
[T (r, F ) + O(1)].

(1.6) Θ(0, F ) = 1− lim sup
r→∞

N
(
r, 1

F

)

T (r, F )
≥ 1− 2

s(n + m)
.

Similarly,

(1.7) Θ(0, G) ≥ 1− 2
s(n + m)

.

(1.8) Θ(∞, F ) = 1− lim sup
r→∞

N (r, F )
T (r, F )

≥ 1− 1
s(n + m)

.

Similarly,

(1.9) Θ(∞, G) ≥ 1− 1
s(n + m)

.

Consider

Nk+1

(
r,

1
F

)
= Nk+1

(
r,

1
fnP (f)

)
= (k + 1)N

(
r,

1
fnP (f)

)

≤ (k + 1)
s(n + m)

[T (r, F ) + O(1)].
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Next, we have

(1.10) δk+1(0, F ) = 1− lim sup
r→∞

Nk+1

(
r, 1

F

)

T (r, F )
≥ 1− (k + 1)

s(n + m)
.

Similarly,

(1.11) δk+1(0, G) ≥ 1− (k + 1)
s(n + m)

.

From (2.5) to (2.10), we get

∆ ≥ (k + 4)
(

1− 2
s(n + m)

)
+ 2

(
1− 1

s(n + m)

)
+ 2

(
1− (k + 1)

s(n + m)

)
.

Since s(n + m) > 4k + 12, we get ∆ > k + 7.
Therefore, by Lemma 2.2, we deduce that either F (k)G(k) ≡ 1 or F ≡ G.
If F (k)G(k) ≡ 1, that is

[fn(amfm + am−1f
m−1 + · · ·+ a1f + a0)](k)

· [gn(amgm + am−1g
m−1 + · · ·+ a1g + a0)](k) ≡ 1

(1.12)

then by Lemma 2.4 we can get a contradiction.
Hence, we deduce that F ≡ G, that is

(1.13)
fn(amfm + am−1f

m−1 + ... + a1f + a0) = gn(amgm + am−1g
m−1 + ... + a1g + a0).

Let h = f
g . If h is a constant, then substituting f = gh in (2.12) we obtain

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + ... + a0g

n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, ..., n + m − i, ...n), am−1 6= 0 for some
i = 0, 1, ...m. Thus f ≡ tg for a constant t such that td = 1, where d = (n +
m, ..., n + m− i, ...n), am−i 6= 0 for some i = 0, 1, ...m.

If h is not a constant , then we know (2.12) that f and g satisfy the algebraic
equation R(f, g) = 0, where R(ω1, ω2) = ωn

1 P (ω1)− ωn
2 P (ω2).

This completes the proof of Theorem 1.1. 2

Proof of Theorem 1.2.

Let F = fnP (f) and G = gnP (g) then [F ](k) and [G](k) share 1IM. We have

∆ = [(2k + 3)Θ(∞, F ) + (2k + 4)Θ(∞, G) + Θ(0, F ) + Θ(0, G)
+2δk+1(0, F ) + 3δk+1(0, G)]
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Consider

N

(
r,

1
F

)
= N

(
r,

1
fnP (f)

)
≤ 2

s(n + m)
N

(
r,

1
F

)
≤ 2

s(n + m)
[T (r, F ) + O(1)].

(1.14) Θ(0, F ) = 1− lim sup
r→∞

N
(
r, 1

F

)

T (r, F )
≥ 1− 2

s(n + m)
.

Similarly,

(1.15) Θ(0, G) ≥ 1− 2
s(n + m)

.

(1.16) Θ(∞, F ) = 1− lim sup
r→∞

N (r, F )
T (r, F )

≥ 1− 1
s(n + m)

.

Similarly,

(1.17) Θ(∞, G) ≥ 1− 1
s(n + m)

.

Consider

Nk+1

(
r,

1
F

)
= Nk+1

(
r,

1
fnP (f)

)
= (k + 1)N

(
r,

1
fnP (f)

)

≤ (k + 1)
s(n + m)

[T (r, F ) + O(1)].

Next, we have

(1.18) δk+1(0, F ) = 1− lim sup
r→∞

Nk+1

(
r, 1

F

)

T (r, F )
≥ 1− (k + 1)

s(n + m)
.

Similarly,

(1.19) δk+1(0, G) ≥ 1− (k + 1)
s(n + m)

.

From (2.13) to (2.18), we get

∆ ≥ 2
(

1− 2
s(n + m)

)
+ (4k + 7)

(
1− 1

s(n + m)

)
+ 5

(
1− (k + 1)

s(n + m)

)
.

Since s(n + m) > 9k + 16, we get ∆ > 4k + 13.
Now proceeding as in Theorem 1.1 we can prove the Theorem 1.2. This com-

pletes the proof of Theorem 1.2. 2
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