DOI QR코드

DOI QR Code

A 10-bit 10-MS/s Asynchronous SAR analog-to-digital converter with digital-to-analog converter using MOM capacitor

MOM 커패시터를 사용한 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 비동기 축차근사형 아날로그-디지털 변환기

  • Jeong, Yeon-Ho (Department of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Jang, Young-Chan (Department of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2013.11.13
  • Accepted : 2013.12.23
  • Published : 2014.01.31

Abstract

This paper presents a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) which consists of a digital-to-analog converter (DAC), a SAR logic, and a comparator. The designed asynchronous SAR ADC with a rail-to-rail input range uses a binary weighted DAC using metal-oxide-metal (MOM) capacitor to improve sampling rate. The proposed 10-bit 10-MS/s asynchronous SAR ADC is fabricated using a 0.18-${\mu}m$ CMOS process and its active area is $0.103mm^2$. The power consumption is 0.37 mW when the voltage of supply is 1.1 V. The measured SNDR are 54.19 dB and 51.59 dB at the analog input frequency of 101.12 kHz and 5.12 MHz, respectively.

본 논문은 디지털-아날로그 변환기(DAC: digital-to-analog converter), SAR 로직, 그리고 비교기로 구성된 10-bit 10-MS/s 비동기 축차근사형(SAR: successive approximation register) 아날로그-디지털 변환기(ADC: analog-to-digital converter)를 제안한다. Rail-to-rail의 입력 범위를 가지는 설계된 비동기 축차근사형 아날로그-디지털 변환기는 샘플링 속도를 향상시키기 위해 MOM(metal-oxide-metal) 커패시터를 이용한 바이너리 가중치 기반의 디지털-아날로그 변환기를 사용하여 구현한다. 제안하는 10-bit 10-MS/s 비동기 축차근사형 아날로그-디지털 변환기는 0.18-${\mu}m$ CMOS 공정에서 제작되고 면적은 $0.103mm^2$를 차지한다. 1.1 V의 공급전압에서 전력소모는 0.37 mW를 나타낸다. 101.12 kHz와 5.12 MHz의 아날로그 입력 신호에 대해 측정된 SNDR은 각각 54.19 dB와 51.59 dB이다.

Keywords

References

  1. N. Verma, A. P. Chandrakasan, "An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes," IEEE J. Solid-State Circuits, vol.42, no.42, pp.1196-1205, Jun. 2007. https://doi.org/10.1109/JSSC.2007.897157
  2. H.-C. Hong, G.-M. Lee, "A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC," IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2161-2168, Oct. 2007. https://doi.org/10.1109/JSSC.2007.905237
  3. J.-H. Eo, S.-H. Kim, and Y.-C. Jang, "A 1V 200 kS/s 10-bit Successive Approximation ADC for a Sensor Interface," IEICE transaction on Electronics, vol. E94-C, no. 11, pp. 1798-1801, Nov., 2011. https://doi.org/10.1587/transele.E94.C.1798
  4. J.-H. Eo, S.-H. Kim, and Y.-C. Jang, "A Time-Domain Comparator for Micro-Powered Successive Approximation ADC," Journal of the Korea Institute of Information and Communication Engineering, vol. 16, no. 6, pp. 1250-1259, Jun., 2012. https://doi.org/10.6109/jkiice.2012.16.6.1250
  5. S. H. Cho, C. K. Lee and J. K. Kwon, "A 550-uW 10-b 40-MS/s SAR ADC With Multistep Addition-Only Digital Error Corrections," IEEE J. Solid-State Circuits, vol. 46, no. 8, pp.1881-1892, Aug. 2011. https://doi.org/10.1109/JSSC.2011.2151450
  6. S. W. M. Chen and R. W. Brodersen, "A 6b 600MS/s 5.3m W Asynchronous ADC in 0.13-${\mu}m$ CMOS," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006. https://doi.org/10.1109/JSSC.2006.884231
  7. S. K. Lee, S. J. Park, and Y. Suh, "A 1.3uW 0.6V 8.7-ENOB Successive Approximation ADC in a 0.18${\mu}m$ CMOS," IEEE VLSI Circuit Symp, Kyoto, pp. 242-243, Jun. 2009.
  8. M. Hotta, A. Hayakawa, and N. Zhao, "SAR ADC Architecture with Digital Error Correction" IEEJ International Analog VLSI Workshop, Hangzhou, Nov. 2006.
  9. F. Kuttner, "1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13${\mu}m$ CMOS" IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp. 176-177, Feb. 2002.
  10. H. W. Chen, Y. H. Liu, and Y. H. Lin, "A 3mW 12b 10MS/s sub-range SAR ADC," IEEE ASSCC, Taipei, pp. 153-156, Nov. 2009.
  11. P. Harpe, C. Zhou, and X. Wang, "A 30fJ/Conversion-Step 8b 0-to-10MS/s Asynchronous SAR ADC in 90nm CMOS," IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp. 388-389, Feb. 2010.
  12. S. P. Nam, Y. M. Kim and D. H. Hwang, "A 10b 1MS/s -to-10MS/s 0.11um CMOS SAR ADC for analog TV applications," IEEE ISOCC, pp. 124-127, Nov. 2012.