DOI QR코드

DOI QR Code

EXISTENCE OF PROPER CONTACT CR PRODUCT AND MIXED FOLIATE CONTACT CR SUBMANIFOLDS OF E2m+1(-3)

  • Kim, Hyang Sook (Department of Applied Mathematics, Institute of Basic Science, Inje University) ;
  • Pak, Eunmi (Department of Mathematics, Kyungpook National University) ;
  • Pak, Jin Suk (Kyungpook National University)
  • Received : 2013.03.05
  • Accepted : 2014.01.03
  • Published : 2014.01.31

Abstract

The first purpose of this paper is to study contact CR submanifolds of Sasakian manifolds and investigate some properties concernig with ${\phi}$-holomorphic bisectional curvature. The second purpose is to show an existence theorem of mixed foliate proper contact CR submanifolds in the standard Sasakian space form $E^{2m+1}$(-3) with constant ${\phi}$-sectional curvature -3.

Keywords

References

  1. A. Bejancu, Geometry of CR-submanifolds, D. Reidel publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
  2. A. Bejancu, Umbilical semi-invariant submanifolds of a Sasakian manifold, Tensor N.S. 37(1982), 203-213.
  3. A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. St. Univ. Al. I. Cuza Iasi. 27(1981), 163-170.
  4. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
  5. S. Funabashi, Automorphisms and a reduction theorem in a Sasakian space form $E^-2m+1}(-3)$, Annali di Matematica pura ed applicata (IV), CXLV(1986), 317-336.
  6. B.Watson, The dierential geometry of two types of almost contact metric submersions, The mathematical heritage of C. F. Gauss, 827-861, World Sci. Publ., River Edge, NJ, 1991.
  7. K. Yano and M. Kon, Contact CR-submanifolds, Kodai Math. J. 5(1982), 238-252. https://doi.org/10.2996/kmj/1138036553
  8. K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian Manifolds, Birkhauser, Boston, Basel, Stuttgart, 1983.
  9. K. Yano and M. Kon, Structures on manifolds, World Scientic, Singapore, 1984.