References
- Baek, N. I., Kim, D. S., Lee, Y. H., Park, J. D., Lee, C. B. and Kim, S. I. (1996) Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med. 62, 86-87. https://doi.org/10.1055/s-2006-957816
- Berasain, C., Castillo. J., Perugorria, M. J., Latasa, M. U., Prieto, J. and Avila, M. A. (2009) Inflammation and liver cancer: new molecular links. Ann. N. Y. Acad. Sci. 1155, 206-221. https://doi.org/10.1111/j.1749-6632.2009.03704.x
- Christensen, L. P. (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55, 1-99.
- Elsharkawy, A. M. and Mann, D. A. (2007) Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46, 590-597. https://doi.org/10.1002/hep.21802
- Ernst, E. (2010) Panax ginseng: An Overview of the Clinical Evidence. J. Ginseng Res. 34, 259-263. https://doi.org/10.5142/jgr.2010.34.4.259
- Farinati, F., Piciocchi, M., Lavezzo, E., Bortolami, M. and Cardin, R. (2010) Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Dig. Dis. 28, 579-584. https://doi.org/10.1159/000320052
- Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-inflammatory activity of structurally related flavonoids, apigenin, luteolin and fisetin. Int. Immunopharmacol. 11, 1150-1159. https://doi.org/10.1016/j.intimp.2011.03.012
-
Gasparini, C. and Feldmann, M. (2012) NF-
${\kappa}B$ as a target for modulating inflammatory responses. Curr. Pharm. Des. 18, 5735-5745 https://doi.org/10.2174/138161212803530763 - Hofseth, L. J. and Wargovich, M. J. (2007) Inflammation, cancer, and targets of ginseng. J. Nutr. 137, 183S-185S. https://doi.org/10.1093/jn/137.1.183S
- Holt, A. P., Salmon, M., Buckley, C. D. and Adams, D. H. (2008) Immune interactions in hepatic fibrosis. Clin. Liver Dis. 12, 861-882. https://doi.org/10.1016/j.cld.2008.07.002
- Kawanishi, S., Hiraku, Y., Pinlaor, S. and Ma, N. (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem. 387, 365-372.
-
Kim, S. E., Lee, Y. H., Park, J. H. and Lee, S. K. (1999) Ginsenoside-
$Rs_4$ , a new type of ginseng saponin concurrently induces apoptosis and selectively elevates protein levels of p53 and p21WAF1 in human hepatoma SK-HEP-1 cells. Eur. J. Cancer 35, 507-11. https://doi.org/10.1016/S0959-8049(98)00415-8 - Lee, I. A., Hyam, S. R., Jang, S. E., Han, M. J. and Kim, D. H. (2012) Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J. Agric. Food Chem. 60, 9595-9602 https://doi.org/10.1021/jf301372g
- Lee, J. G., Baek, S. H., Lee, Y. Y., Park, S. Y. and Park, J. H. (2011) Anti-complementary ginsenosides isolated from processed ginseng. Biol. Pharm. Bull. 34, 898-900. https://doi.org/10.1248/bpb.34.898
- Lentsch, A. B. and Ward, P. A. (2000) The NFkappaBb/IkappaB system in acute inflammation. Arch. Immunol. Ther. Exp. (Warsz) 48, 59-63.
- Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
- Liu, G. Y., Li, X. W., Wang, N. B., Zhou, H. Y., Wei, W., Gui, M. Y., Yang, B. and Jin, Y. R. (2010) Three new dammarane-type triterpene saponins from the leaves of Panax ginseng C.A. Meyer. J. Asian Nat. Prod. Res. 12, 865-873. https://doi.org/10.1080/10286020.2010.508035
- Luqman, S. and Pezzuto, J. M. (2010) NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother. Res. 24, 949-963.
- Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-related inflammation. Nature 454, 436-444. https://doi.org/10.1038/nature07205
- Nam, N. H. (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev. Med. Chem. 6, 945-951. https://doi.org/10.2174/138955706777934937
- Park, T. Y., Park, M. H., Shin, W. C., Rhee, M. H., Seo, D. W., Cho, J. Y. and Kim, H. M. (2008) Anti-metastatic potential of ginsenoside Rp1, a novel ginsenoside derivative. Biol. Pharm. Bull. 31, 1802-1805. https://doi.org/10.1248/bpb.31.1802
-
Song, S. B., Tung, N. H., Quang, T. H., Ngan, N. T., Kim, K. E. and Kim, Y. H. (2012) Inhibition of TNF-
${\alpha}$ -mediated NF-${\kappa}B$ transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. J. Ginseng Res. 36, 146-152. https://doi.org/10.5142/jgr.2012.36.2.146 - Sun, J., Sun, G., Meng, X., Wang, H., Wang, M., Qin, M., Ma, B., Luo, Y., Yu, Y., Chen, R., Ai, Q. and Sun, X. (2013) Ginsenoside RK3_prevents hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes via AKT and MAPK pathway. Evid. Based Complement Alternat. Med. 2013, 690190.
- Toh, D. F., Patel, D. N., Chan, E. C., Teo, A., Neo, S. Y. and Koh, H. L. (2011) Anti-proliferative effects of raw and steamed extracts of Panax notoginseng and its ginsenoside constituents on human liver cancer cells. Chin. Med. 6, 4. https://doi.org/10.1186/1749-8546-6-4
- Tung, N. H., Song, G. Y., Park, Y. J. and Kim, Y. H. (2009) Two new dammarane-type saponins from the leaves of Panax ginseng. Chem. Pharm. Bull. (Tokyo) 57, 1412-1414. https://doi.org/10.1248/cpb.57.1412
- Tung, N. H., Song, G. Y., Minh, C. V., Kiem, P. V., Jin, L. G., Boo, H. J., Kang, H. K. and Kim, Y. H. (2010a) Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem. Pharm. Bull. (Tokyo) 58, 1111-1115. https://doi.org/10.1248/cpb.58.1111
- Tung, N. H., Cho, K., Kim, J. A., Song, G. Y. and Kim, Y. H. (2010b) Dammarane-type glycosides from the steamed flower-buds of Panax ginseng. Bull. Korean Chem. Soc. 31, 1381-1384. https://doi.org/10.5012/bkcs.2010.31.5.1381
- Tung, N. H., Song, G. Y., Kim, J. A., Hyun, J. H., Kang, H. K. and Kim, Y. H. (2010c) Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia Cells. Bioorg. Med. Chem. Lett. 20, 309-314. https://doi.org/10.1016/j.bmcl.2009.10.110
- Tung, N. H., Song, G. Y., Nhiem, N. X., Ding, Y., Tai, B.H., Jin, L. G., Lim, C. M., Hyun, J. W., Park, C. J., Kang, H. K. and Kim, Y. H. (2010d) Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J. Agric. Food Chem. 58, 868-874. https://doi.org/10.1021/jf903334g
- Tung, N. H., Quang, T. H., Son, J. H., Koo, J. E., Hong, H. J., Koh, Y. S., Song, G. Y. and Kim, Y. H. (2011) Inhibitory effect of ginsenosides from steamed ginseng-leaves and flowers on the LPS-stimulated IL-12 production in bone marrow-derived dendritic cells. Arch. Pharm. Res. 34, 681-685. https://doi.org/10.1007/s12272-011-0419-2
- Vuksan, V., Sievenpipper, J., Jovanovski, E. and Jenkins, A. L. (2010) Current clinical evidence for Korean red ginseng in management of diabetes and vascular disease: a Toronto's ginseng clinical testing program. J. Ginseng Res. 34, 264-273. https://doi.org/10.5142/jgr.2010.34.4.264
- Wang, H., Peng, D. and Xie, J. (2009) Ginseng leaf-stem: bioactive constituents and pharmacological functions. Chin. Med. 4, 20. https://doi.org/10.1186/1749-8546-4-20
- Wang, L., Zhang, Y., Wang, Z., Li, S., Min, G., Wang, L., Chen, J., Cheng, J. and Wu, Y. (2012) Inhibitory effect of ginsenoside-Rd on carrageenan-induced inflammation in rats. Can. J. Physiol. Pharmacol. 90, 229-236. https://doi.org/10.1139/y11-127
Cited by
- A Strategy for Simultaneous Isolation of Less Polar Ginsenosides, Including a Pair of New 20-Methoxyl Isomers, from Flower Buds of Panax ginseng vol.22, pp.3, 2017, https://doi.org/10.3390/molecules22030442
- Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN vol.5, pp.1, 2015, https://doi.org/10.1038/srep16262
- Effects of Complementary Combination Therapy of Korean Red Ginseng and Antiviral Agents in Chronic Hepatitis B vol.22, pp.12, 2016, https://doi.org/10.1089/acm.2015.0206
- Isolation, Purification and Quantification of Ginsenoside F5 and F3 Isomeric Compounds from Crude Extracts of Flower Buds of Panax ginseng vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030315
- Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040759
- Modified Ginseng Extract Induces Apoptosis in HepG2 Cancer Cells by Blocking the CXCL8-Mediated Akt/Nuclear Factor-κB Signaling Pathway vol.46, pp.07, 2018, https://doi.org/10.1142/S0192415X18500842
- -Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2018.4180
- Boosting the autophagy‐lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease vol.72, pp.11, 2014, https://doi.org/10.1002/iub.2369
- Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway vol.68, pp.51, 2014, https://doi.org/10.1021/acs.jafc.0c06474