DOI QR코드

DOI QR Code

Follower classification system based on the similarity of Twitter node information

트위터 사용자정보의 유사성을 기반으로 한 팔로어 분류시스템

  • 계용선 (가천대학교 컴퓨터공학과) ;
  • 윤영미 (가천대학교 컴퓨터공학과)
  • Received : 2013.11.30
  • Accepted : 2014.01.14
  • Published : 2014.01.29

Abstract

Current friend recommendation system on Twitter primarily recommends the most influential twitter. However, this way of recommendation has drawbacks where it does not recommend the users of which attributes of interests are similar to theirs. Since users want other users of which attributes are similar, this study implements follower recommendation system based on the similarity of twitter node informations. The data in this study is from SNAP(Stanford Network Analysis Platform), and it consists of twitter node information of which number of followers is over 10,000 and twitter link information. We used the SNAP data as a training data, and generated a classifier which recommends and predicts the relation between followers. We evaluated the classifier by 10-Fold Cross validation. Once two twitter node informations are given, our model can recommend the relationship of the two twitters as one of following such as: FoFo(Follower Follower), FoFr(Follower Friend), NC(Not Connected).

현재 트위터에서 제공되는 친구추천 시스템은 영향력이 높은 사용자를 우선적으로 추천해준다. 하지만 사용자정보의 유사성이 높은 다른 사용자는 추천되지 않는 단점을 가지고 있다. 사용자들은 정보의 유사성이 높은 사용자 추천을 원하기 때문에 이러한 단점을 극복하기 위하여 본 논문에서는 사용자정보의 유사성을 기반으로 팔로어 추천 시스템을 구현하였다. 본 논문에서 사용된 데이터는 SNAP(Stanford Network Analysis Platform)에서 제공하는 데이터로, 팔로어의 수가 10,000명이상인 트위터의 사용자정보와 노드간 연결 데이터로 구성된다. 이 데이터를 트레이닝 데이터로 활용하여 팔로어간의 관계를 분류해줄 수 있는 분류자를 생성하고, 10-Fold Cross Validation을 활용하여, 분류자의 정확도를 판단한다. 두 트위터의 정보가 주어지면 그들 사이에 친구 관계, 팔로우 관계, 비연결 관계를 추천한다.

Keywords

References

  1. Danah Boyd, and Nicole Elison, "Social Network Sites: Definition, History, and Scholarship," Journal of Computer-Mediated Communication, Vol. 13, No. 1, pp. 210-230, 2008.
  2. J. Jansen, Zhang Mimi, Kate Sobel, and Abdur Chowdury, "Twitter power: Tweets as electronic word of mouth," Journal of the American Society for Information Science and Technology archive, Vol. 60, No. 11, pp. 2169-2188, November 2009. https://doi.org/10.1002/asi.21149
  3. Dong Hee, "Analysis of Online Social Networks: A Cross-National Study," Online Information Review, Vol. 34, No. 3, pp. 473-495, 2010. https://doi.org/10.1108/14684521011054080
  4. R. Hazlewood, K. Makice, and W. Ryan, "Twitter space: A co-developed display using twitter to enhance community awareness," Proceeding PDC '08 Proceedings of the Tenth Anniversary Conference on Participatory Design, pp. 230-233 Indiana University Indianapolis, IN, USA, 2008.
  5. A. Golder and Yardi, "Structural predictors of tie formation in twitter: Transitivity and mutuality," Proceedings of the second IEEE international conference on social computing, Minneapolis, MN, USA, August 2010.
  6. P. Brandtzag, and J. Heim, "Why people use social networking sites," Online Communities and Social Computing, Vol. 5621, pp. 143-152, 2009. https://doi.org/10.1007/978-3-642-02774-1_16
  7. R. Baker, and M. White, "Predicting adolescents' use of social networking sites from an extended theory of planned behaviour perspective," Computers in Human Behavior, Vol. 26, No. 6, pp. 1591-1597, 2010. https://doi.org/10.1016/j.chb.2010.06.006
  8. Kwak Haewoon, Lee Changhyun , Park Hosung , and Moon Sue, "What is Twitter, a social network or a news media?," Proceedings of the 19th international conference on World wide we, New York, USA, pp. 591-600, 2010.
  9. Hong SamYull, "Comparative Analysis of User Access Factor of Twitter and Facebook," Korean Internet Information Association Autumn Conference Thesis. Vol. 11, No 2, pp. 248-252, 2010.
  10. B. Ellison, C. Steinfield, and C. Lampe, "The benefits of Facebook friends: social capital and college students use of online social network sites," Journal of Computer-Mediated Communication, Vol. 12, No. 4, pp. 1143-1168, 2007.
  11. Kuss Daria, Griffiths Mark, "Online Social Networking and Addiction: A Review of the Psychological Literature," Online Social Networking and Addiction: A Review of the Psychological Literature, Vol. 8, No. 9, pp. 3528-355, 2011.
  12. B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about twitter. In Proc. of the 1st workshop on Online social networks. ACM, 2008.
  13. M. Chen,"Tweet this: A uses and gratifications perspective on how active Twitter use gratifies a need to connect with others," Computers in Human Behavior, Vol. 27, No.2, pp. 755-762, 2011. https://doi.org/10.1016/j.chb.2010.10.023
  14. D. Davidiv, O. Oren Tsur, and A. Rappoport, "Enhanced sentiment learning using twitter hashtags and smileys," Proceedings of the 23rd International Conference on Computational Linguistics, 2010.
  15. SNAP Stanford, http://snap.stanford.edu/.
  16. I. Witten, E. Frank, and M. Hall, "Data Mining : Practical Machine Learning Tools and Techniques, Third Edition", Morgan Kaufmann Publishers, Burlington, MA 01803, USA, ISBN 978-0-12-374856-0, 2011.
  17. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and H. Ian, "The WEKA Data Mining Software: An Update", ACM SIGKDD Explorations Newsletter, Vol. 11, No. 1, pp. 10-18, 2009. https://doi.org/10.1145/1656274.1656278
  18. Hyeoniee Jeong, Youngmi Yoon, "Class prediction of an independent sample using a set of gene modules consisting of gene-pairs which were condition(Tumor, Normal) specific," Journal of The Korea Society of Computer and Information, Vol. 15, No. 12, pp. 197-207, 2010. https://doi.org/10.9708/jksci.2010.15.12.197
  19. YoungmiYoon, Young-HoLee, "Emotion Classification System for Chatting Data," Journal of The Korea Society of Computer and Information, Vol. 14, No. 5, pp. 11-17, 2009.
  20. Liaw, Andy and Wiener, Matthew "Classification and Regression by randomForest," R News Vol. 2 No.3, pp. 18-22, 2002.