References
- Choubey, A., Veeramani, P., Pym, A. T. G., Mullins, J. T., Sellin, P. J., Brinkman, A. W., Radley, I., Basu, A. and Tanner, B. K., "Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te," J. Cryst. Growth, 352, 120-123(2012). https://doi.org/10.1016/j.jcrysgro.2012.03.005
- Shi, Y., Yang, J. F., Liu, H., Dai, P., Liu, B., Jin, Z., Qiao, G. and Li, H., "Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique," J. Cryst. Growth, 349, 68-74(2012). https://doi.org/10.1016/j.jcrysgro.2012.03.055
- Zotov, N., Baumann, S., Meulenberg, W. A. and VaBen, R., "La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition," J. Membr. Sci., 442, 119-123(2013). https://doi.org/10.1016/j.memsci.2013.04.016
- Fanton, M. A., Li, Q., Polyakov, A. Y., Skowronski, M., Cavalero, R. and Ray, R., "Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results," J. Cryst. Growth, 287, 339-343(2006). https://doi.org/10.1016/j.jcrysgro.2005.11.022
- Su, C. H., George, M. A., Palosz, W., Feth, S. and Lehoczky, S. L., "Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport," J. Cryst. Growth, 213, 267-275(2000). https://doi.org/10.1016/S0022-0248(00)00385-7
- Paorici, C., Razzetti, C., Zha, M., Zanotti, L., Carotenuto, L. and Ceglia, M., "Physical Vapour Transport of Urotropine: One-Dimensional Model," Mater. Chem. Phys., 66, 132-137(2000). https://doi.org/10.1016/S0254-0584(00)00312-6
-
Lee, Y. K. and Kim, G. T., "Effects of Convection on Physical Vapor Transport of
$Hg_2Cl_2$ in the Presence of Kr- Part I: Under Microgravity Environments," J. Korean Crystal Growth and Crystal Tech., 23, 20-26(2013). https://doi.org/10.6111/JKCGCT.2013.23.1.020 - Greenwell, D. W., Markham, B. L. and Rosenberger, F., "Numerical Modeling of Diffusive Physical Vapor Transport in Cylindrical Ampoules," J. Cryst. Growth, 51, 413-425(1981). https://doi.org/10.1016/0022-0248(81)90418-8
- Markham, B. L., Greenwell, D. W. and Rosenberger, F., "Numerical Modeling of Diffusive-Convective Physical Vapor Transport in Cylindrical Vertical Ampoules," J. Cryst. Growth, 51, 426-437 (1981). https://doi.org/10.1016/0022-0248(81)90419-X
- Jhaveri, B. S. and Rosenberger, F., "Expansive Convection in Vapor Transport across Horizontal Enclosures," J. Cryst. Growth, 57, 57-64(1982). https://doi.org/10.1016/0022-0248(82)90248-2
- Markham, B. L. and Rosenberger, F., "Diffusive-Convective Vapor Transport across Horizontal and Inclined Rectangular Enclosures," J. Cryst. Growth, 67, 241-254(1984). https://doi.org/10.1016/0022-0248(84)90184-2
- Nadarajah, A., Rosenberger, F. and Alexander, J., "Effects of Buoyancy-Driven Flow and Thermal Boundary Conditions on Physical Vapor Transport," J. Cryst. Growth, 118, 49-59(1992). https://doi.org/10.1016/0022-0248(92)90048-N
- Zhou, H., Zebib, A., Trivedi, S. and Duval, W. M. B., "Physical Vapor Transport of Zinc-Telluride by Dissociative Sublimation," J. Cryst. Growth, 167, 534-542(1996). https://doi.org/10.1016/0022-0248(96)00305-3
- Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-I: Thermal Convection," J. Mater. Proc. Manufacturing Sci., 1, 83-104(1992).
- Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-II: Thermosolutal Convection," J. Mater. Proc. Manufacturing Sci., 1, 295-313(1993).
- Duval, W. M. B., Glicksman, N. E. and Singh, B., "Physical Vapor Transport of Mercurous Chloride Crystals; Design of a Microgravity Experiment," J. Cryst. Growth, 174, 120-129(1997). https://doi.org/10.1016/S0022-0248(96)01088-3
- Tebbe, P. A., Loyalka, S. K. and Duval, W. M. B., "Finite Element Modeling of Asymmetric and Transient Flow Fields during Physical Vapor Transport," Finite Elements in Analysis and Design, 40, 1499-1519(2004). https://doi.org/10.1016/j.finel.2003.09.003
-
Kim, G. T., Duval, W. M. B., Singh, N. B. and Glickman, M. E., "Thermal Convective Effects on Physical Vapor Transport Growth of Mercurous Chloride Crystals (
$Hg_2C1_2$ ) for Axisymmetric 2-D Cylindrical Enclosure," Model. Simul. Mater. Sci. Eng., 3, 331-357(1995). https://doi.org/10.1088/0965-0393/3/3/004 -
Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Thermal Convection in Physical Vapour Transport of Mercurous Chloride (
$Hg_2C1_2$ ) for Rectangular Enclosures," Model. Simul. Mater. Sci. Eng., 5, 289-309(1997). https://doi.org/10.1088/0965-0393/5/3/007 -
Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Effects of Asymmetric Temperature Profiles on Thermal Convection during Physical Vapor Transport of
$Hg_2C1_2$ ," Chem. Eng. Comm., 162, 45-61 (1997). https://doi.org/10.1080/00986449708936631 - Rosenberger, F. and Muller, G., "Interfacial Transport in Crystal Growth, a Parameter Comparison of Convective Effects," J. Cryst. Growth, 65, 91-104(1983). https://doi.org/10.1016/0022-0248(83)90043-X
Cited by
- Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO vol.26, pp.6, 2015, https://doi.org/10.14478/ace.2015.1112
- Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1028
- Preliminary Studies on Double-Diffusive Natural Convection During Physical Vapor Transport Crystal Growth of Hg2Br2 for the Spaceflight Experiments vol.57, pp.2, 2019, https://doi.org/10.9713/kcer.2019.57.2.289
- Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2 vol.30, pp.3, 2014, https://doi.org/10.6111/jkcgct.2020.30.3.117