DOI QR코드

DOI QR Code

Nitrogen Monoxide Gas Sensing Properties of CuO Nanorods Synthesized by a Hydrothermal Method

수열합성법으로 합성된 산화구리 나노막대의 일산화질소 가스 감지 특성

  • Park, Soo-Jeong (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Hyojin (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University) ;
  • Kim, Dojin (Graduate School of Advanced Electronic Circuit Substrate Engineering, Chungnam National University)
  • 박수정 (충남대학교 차세대전자기판회로학과) ;
  • 김효진 (충남대학교 차세대전자기판회로학과) ;
  • 김도진 (충남대학교 차세대전자기판회로학과)
  • Received : 2013.10.11
  • Accepted : 2013.12.04
  • Published : 2014.01.27

Abstract

We report the nitrogen monoxide (NO) gas sensing properties of p-type CuO-nanorod-based gas sensors. We synthesized the p-type CuO nanorods with breadth of about 30 nm and length of about 330 nm by a hydrothermal method using an as-deposited CuO seed layer prepared on a $Si/SiO_2$ substrate by the sputtering method. We fabricated polycrystalline CuO nanorod arrays at $80^{\circ}C$ under the hydrothermal condition of 1:1 morality ratio between copper nitrate trihydrate [$Cu(NO_2)_2{\cdot}3H_2O$] and hexamethylenetetramine ($C_6H_{12}N_4$). Structural characterizations revealed that we prepared the pure CuO nanorod array of a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the gas sensing measurements that the p-type CuO nanorod gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $200^{\circ}C$. We also found that these CuO nanorod gas sensors showed reversible and reliable electrical response to NO gas at a range of operating temperatures. These results would indicate some potential applications of the p-type semiconductor CuO nanorods as promising sensing materials for gas sensors, including various types of p-n junction gas sensors.

Keywords

References

  1. N. Yamazoe and N. Miura, Sens. Actuators B, 20(2-3), 95 (1994). https://doi.org/10.1016/0925-4005(93)01183-5
  2. D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics and W. Gopel, Sens. Actuators B, 69(1-2), 1 (2000). https://doi.org/10.1016/S0925-4005(00)00295-1
  3. Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93(1-3), 435 (2003). https://doi.org/10.1016/S0925-4005(03)00170-9
  4. T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005). https://doi.org/10.1007/s00339-004-3075-2
  5. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B, 66, 277 (2000). https://doi.org/10.1016/S0925-4005(00)00381-6
  6. Z. Fan and J. G. Lu, J. Nanosci. Nanotech., 5, 1561 (2005). https://doi.org/10.1166/jnn.2005.182
  7. A. O. Dikovska, Sens. Actuators A, 140, 19 (2007). https://doi.org/10.1016/j.sna.2007.05.032
  8. S. -M. Park, S. -L. Zhang and J. H. Huh, Kor. J. Mater. Res., 18, 367 (2008). https://doi.org/10.3740/MRSK.2008.18.7.367
  9. M. Li, H. Schnablegger and S. Mann, Nature, 402, 393 (1999). https://doi.org/10.1038/46509
  10. G. R. Patzke, F. Krumeich and R. Nesper, Angew. Chem. Int. Ed., 41, 2446 (2002). https://doi.org/10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
  11. Y. Chang and H. C. Zeng, Crystal Growth Des., 4, 397 (2004). https://doi.org/10.1021/cg034127m
  12. W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, L. Zhang and J. Jiang, J. Phys. Chem. B, 109, 14011 (2005). https://doi.org/10.1021/jp0517605
  13. X. G. Wen, Y. T. Xie, C. L. Choi, K. C. Wan, X. Y. Li and S. H. Yang, Langmuir, 21, 4729 (2005). https://doi.org/10.1021/la050038v
  14. F. Gao, H. Pang, S. P. Xu and Q. Y. Lu, Chem. Commun., 3571 (2009).
  15. K. M. Shrestha, C. M. Sorensen and K. J. Klabunde, J. Phys. Chem. C, 114(34), 14368 (2010). https://doi.org/10.1021/jp103761h
  16. C. Yang, X. Su, F. Xiao, J. Jian and J. Wang, Sens. Actuators B, 158(1), 299 (2011). https://doi.org/10.1016/j.snb.2011.06.024
  17. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114(2), 969 (2006). https://doi.org/10.1016/j.snb.2005.07.058
  18. J. L. Solis and V. Lantto, Sens. Actuators B, 48(1-3), 322 (1998). https://doi.org/10.1016/S0925-4005(98)00065-3
  19. R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams and G. A. Ozin, Adv. Mater., 13(19), 1468 (2001). https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  20. S. Ahlers, G. Muller and Th. Doll, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006).

Cited by

  1. Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method vol.25, pp.4, 2015, https://doi.org/10.3740/MRSK.2015.25.4.171
  2. Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.604
  3. Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction vol.26, pp.2, 2016, https://doi.org/10.3740/MRSK.2016.26.2.84