DOI QR코드

DOI QR Code

Histogram Matching-based Power Reduction Technique for OLED Display

OLED 디스플레이를 위한 히스토그램 정합 기반 파워 소모 저감 기법

  • Choi, Songwoo (Department of Electrical Engineering, Dong-A University) ;
  • Kim, Young Hwan (Department of Electronic and Electrical Engineering, Pohang University of Science and Technology) ;
  • Kang, Suk-Ju (Department of Electrical Engineering, Dong-A University)
  • Received : 2013.09.27
  • Published : 2014.01.25

Abstract

In this paper, we propose the histogram matching-based power reduction technique considering the perceptual image quality. The conventional methods cannot analyze the clipping error of an image, and hence, they significantly degrade the image quality when pixels with the clipping error are concentrated on small area. The proposed method generates histograms for various images with different characteristics, and it calculates and stores the optimal clipping rate in a database. Then, it compares the histograms with that of an input image, and selects the histogram and clipping rate with the minimum difference to prevent the image quality degradation. In the experimental results, the proposed method improved the average PSNR and SSIM by up to 15.795 dB and 0.036, compared with the conventional methods.

본 논문에서는 OLED 디스플레이에서 히스토그램 정합 기법을 통해 인지 화질을 고려한 파워 소모 저감 기법을 제안한다. 기존 방법의 경우 영상의 클리핑 에러를 정확하게 분석할 수 없어 클리핑 에러를 갖는 픽셀들이 집중된 경우 화질 저하가 크게 발생한다. 제안한 방법은 이를 해결하기 위해서 다른 특성을 갖는 여러 영상들에 대한 히스토그램들을 생성하고 각 영상에 대해 인지 화질을 고려한 최적의 클리핑 비율을 계산 및 데이터베이스에 저장한다. 이를 입력 영상에 대한 히스토그램과 정합도를 비교하여 최적의 클리핑 비율을 선택하여 출력 영상의 화질 저하를 막는다. 실험 결과 제안한 방법은 기존 방법 대비 평균 PSNR과 SSIM을 각각 최대 15.795 dB, 0.036 향상시킬 수 있었다.

Keywords

References

  1. 임성규, "평판 디스플레이 현황 및 발전 전망," 대한전자공학회지, 28권, 4호, pp. 20-23, 2001.
  2. 문대규, "OLED Displays and Lightings," 대한전자공학회지, 35권, 8호, pp. 49-59, 2008.
  3. I. Choi, H. Shim, and N. Chang, "Low-power color TFT LCD display for hand-held embedded systems," in Proc. Int. Symp. Low-Power Electronics and Design, pp. 112-117, Aug. 2002.
  4. S.-J. Kang and Y. H. Kim, "Image Integrity-based gray-level error control for low power liquid crystal displays," IEEE Trans. Consumer Electronics, vol. 55, no. 4, pp. 2401-2406, Nov. 2009. https://doi.org/10.1109/TCE.2009.5373816
  5. N. Chang, I. Choi, and H. Shim, "DLS: dynamic backlight luminance scaling of liquid crystal display," IEEE Trans. on Very Large Scale Integration Systems, vol.12 issue 8, pp. 837-846, Aug. 2004. https://doi.org/10.1109/TVLSI.2004.831472
  6. C.-C. Lai and C.-C. Tsai, "Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications," IEEE Trans. Consumer Electronics, vol. 54, no. 2, pp. 669-674, May 2008. https://doi.org/10.1109/TCE.2008.4560145
  7. H. R. Sheikh, M. F. Sabir, and A. C. Bovik, "A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms," IEEE Trans. on Image Processing, vol. 15, no. 11, pp.3440-3451, Nov. 2006. https://doi.org/10.1109/TIP.2006.881959
  8. S. J. Kang, K. R. Cho, and Y. H. Kim, "Motion compensated frame rate up-conversion using extended bilateral motion estimation," IEEE Trans. Consumer Electronics, Vol. 53, no. 4, pp. 1759-1767, Nov. 2007. https://doi.org/10.1109/TCE.2007.4429281
  9. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Processing, Vol. 13, pp. 600-612, Apr. 2004. https://doi.org/10.1109/TIP.2003.819861
  10. C. Lee, C. Lee and C.S. Kim "Power-constrained contrast enhancement for OLED displays based on histogram equalization", Proc. IEEE ICIP, pp.1689-1692, 2010.

Cited by

  1. Random Pixel Sampling-based Backlight Dimming for Liquid Crystal Display vol.51, pp.11, 2014, https://doi.org/10.5573/ieie.2014.51.11.174