참고문헌
- O. P. Agrawal, Response of a diffusion-wave system subjected to deterministic and stochastic fields, Z. Angew. Math. Mech. 83 (2001), no. 4, 265-274.
- O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam. 29 (2002), 145-155. https://doi.org/10.1023/A:1016539022492
- M. Ciesielski and J. Leszcynski, Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz-Feller fractional operator, Journal of Theoretical and Applied Mechanics 44 (2006), no. 2, 393-403.
- W. Feller, On a generalization of Marcel Riesz' potentials and the semi groups generated by them, Meddeladen Lund Universitets Matematiska Seminarium, Tome Suppl. Dedie A M. Riesz, Lund, (1952), 73-81.
- R. Goren o and F. Mainardi, Random walk models for space-fractional diffusion processes, Fract. Calc. Appl. Anal. 1 (1998), 167-191.
- R. Gorenflo and F. Mainardi, Approximation of Levy-Feller diffusion by random walk, Z. Anal. Anwendungen 18 (1999), 231-146. https://doi.org/10.4171/ZAA/879
- H. J. Haubold, A. M. Mathai, and R. K. Saxena, Solution of fractional reaction-diffusion equations in terms of the H-function, Proceedings of the Second UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and basic Space Science, Indian Institute of Astrophysics, Bulletin of the Astronomical Society of India 35 (2007), 681-689.
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equation, Elsevier B. V., The Netherlands, 2006.
- F. Mainardi, Y. Luchko, and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2001), 153-192.
- A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function, Theory and applications. Springer, New York, 2010.
- R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamic approach, Phys. Rep. 339 (2000), 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.
- N. Ozdemir, D. Avci, and B. B. Iskender, The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equation, An International Journal of Optimization and Control: Theories & Applications(IJOCTA) 1 (2011), no. 1, 17-26. https://doi.org/10.11121/ijocta.01.2011.0028
- I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives, Gordon and Breach, Longhorne Pennsylvania, 1993.
- H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Limited, New York, 1984.
- H. M. Srivastava and R. Panda, Some bilateral generating functions for a class of Generalized hypergeometric polynomials, J. Reine Angew. Math. 283/284 (1976), 265-274.
- A. J. Turski, T. B. Atamaniuk, and E. Turska, Application of fractional derivative operators to anomalous diffusion and propagation problems, arXiv:math-ph/0701068v2, 2007.