DOI QR코드

DOI QR Code

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu (Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University) ;
  • Xie, Yi Min (Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University) ;
  • Felicetti, Peter (Felicetti Pty Ltd.)
  • 투고 : 2012.09.13
  • 심사 : 2013.08.23
  • 발행 : 2014.01.25

초록

The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

키워드

과제정보

연구 과제 주관 기관 : Australian Research Council

참고문헌

  1. Bendsoe, M.P. (1989), "Optimal shape design as a material distribution problem", Struct Optim, 1(4), 193-202. https://doi.org/10.1007/BF01650949
  2. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput Method. Appl. M., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  3. Bendsoe, M.P. and Sigmund, O. (1999), "Material interpolation schemes in topology optimization", Arch. Appl. Mech., 69(9-10), 635-654. https://doi.org/10.1007/s004190050248
  4. Bendsoe, M.P. and Sigmund, O. (2003), Topology optimization: theory, methods and applications, Springer, Berlin; Heidelberg.
  5. Cui, C., Ohmori, H. and Sasaki, M. (2003), "Computational morphogenesis of 3D structures by extended ESO method", Int. J. Assoc. Shell Spatial Struct., 44(1), 51-61.
  6. Felicetti, P. and Xie, Y.M. (2007), "Integrated computerized multi-disciplinary design environment for building structures", Proceedings of the 4th International Structural Engineering and Construction Conference , Melbourne, Australia.
  7. Holmes, J.D. (2007), Wind Loading of Structures, 2nd Ed., Taylor and Francis Ltd, Hoboken.
  8. Huang, X. and Xie, Y.M. (2009), "Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials", Comput. Mech., 43(3), 393-401. https://doi.org/10.1007/s00466-008-0312-0
  9. Huang, X. and Xie, Y.M. (2010), Evolutionary topology optimization of continuum structures: methods and applications, John Wiley and Sons, Ltd, Chichester, England.
  10. Kim, J., Yi, Y.K. and Malkawi, A.M. (2011), "Building form optimization in early design stage to reduce adverse wind condition - using computational fluid dynamics", Proceedings of the Building Simulation 2011: 12th Conference of International Building Performance Simulation Association , Sydney, Australia.
  11. Lee, S., Tovar, A., Renaud, J. and Kareem, A. (2011), "Topological optimization of building structural systems and their shape optimization under aerodynamic loads", Proceedings of the 13th international conference on wind engineering. Amsterdam, Netherlands.
  12. Michell, A.G.M. (1904), "The limits of economy of material in frame-structures", Philos. Mag., 8, 589-597. https://doi.org/10.1080/14786440409463229
  13. Ohmori, H., Futai, H., Iijima, T., Muto, A. and Hasegawa, H. (2005), "Application of computational morphogenesis to structural design", Proceedings of the Frontiers of Computational Sciences Symposium , Nagoya, Japan.
  14. Revuz, J., Hargreaves, D.M. and Owen, J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(4), 313-329. https://doi.org/10.12989/was.2012.15.4.313
  15. Rietz, A. (2001), "Sufficiency of a finite exponent in SIMP (power law) methods", Struct Multidisc. Optim, 21(2), 159-163. https://doi.org/10.1007/s001580050180
  16. Rozvany, G.I.N., Zhou, M. and Birker, T. (1992), "Generalized shape optimization without homogenization", Struct Optim., 4(3-4), 250-254. https://doi.org/10.1007/BF01742754
  17. Sasaki, M. (2005), Flux structure, Toto, Tokyo.
  18. Sethian, J. and Wiegmann, A. (2000), "Structural boundary design via level set and immersed interface methods", J. Comput. Phys., 163(2), 489-528. https://doi.org/10.1006/jcph.2000.6581
  19. Sigmund, O. and Clausen, P.M. (2007), "Topology optimization using a mixed formulation: An alternative way to solve pressure load problems", Comput. Method. Appl. M., 196(13-16), 1874-1889. https://doi.org/10.1016/j.cma.2006.09.021
  20. Tang, J.W., Xie, Y.M., Felicetti, P., Tu, J.Y. and Li, J.D. (2010), "Numerical simulations of wind drags on straight and twisted polygonal buildings", Struct. Des. Tall Spec., 22(1), 62-73.
  21. Tu, J., Yeoh, G.H. and Liu, C. (2008), Computational fluid dynamics : a practical approach, Butterworth-Heinemann, Amsterdam; Boston.
  22. Wang, M.Y., Wang, X. and Guo, D. (2003), "A level set method for structural topology optimization", Comput. Methods Appl. Mech. Engrg., 192(1-2), 227-246. https://doi.org/10.1016/S0045-7825(02)00559-5
  23. Xie, Y.M., Felicetti, P., Tang, J.W. and Burry, M.C. (2005), "Form finding for complex structures using evolutionary structural optimization method", Design Studies, 26(1), 55-72.. https://doi.org/10.1016/j.destud.2004.04.001
  24. Xie, Y.M. and Steven, G.P. (1993), "A simple evolutionary procedure for structural optimization", Comput. Struct., 49(5), 885-896. https://doi.org/10.1016/0045-7949(93)90035-C
  25. Xie, Y.M. and Steven, G. P. (1997), Evolutionary structural optimization, Springer, London.
  26. Yang, X.Y., Xie, Y.M. and Steven, G.P. (2005), "Evolutionary methods for topology optimisation of continuous structures with design dependent loads", Comput. Struct., 83(12-13), 956-963. https://doi.org/10.1016/j.compstruc.2004.10.011
  27. Yang, X.Y., Xie, Y.M., Steven, G.P. and Querin, O.M. (1999), "Bidirectional evolutionary method for stiffness optimization", AIAA J., 37(11), 1483-1488. https://doi.org/10.2514/2.626
  28. Young, V., Querin, O.M., Steven, G.P. and Xie, Y.M. (1999), "3D and multiple load case bi-directional evolutionary structural optimization (BESO)", Struct. Optim., 18(2-3), 183-192. https://doi.org/10.1007/BF01195993
  29. Zakhama, R., Abdalla, M., Gurdal, Z. and Smaoui, H. (2007), "Wind load effect in topology optimization problems", J. Phys. Conf. Ser., 75, 012048. https://doi.org/10.1088/1742-6596/75/1/012048
  30. Zakhama, R., Abdalla, M., Gurdal, Z. and Smaoui, H. (2010), "Wind load modeling for topology optimization of continuum structures", Struct. Multidisc.Optim., 42(1), 157-164. https://doi.org/10.1007/s00158-010-0482-1

피인용 문헌

  1. Creating Innovative and Efficient Structures and Materials vol.438-439, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.438-439.439
  2. The influence of convoy loading on the optimized topology of railway bridges vol.64, pp.1, 2014, https://doi.org/10.12989/sem.2017.64.1.045
  3. Topology optimization of steel plate shear walls in the moment frames vol.29, pp.6, 2014, https://doi.org/10.12989/scs.2018.29.6.771
  4. New form of perforated steel plate shear wall in simple frames using topology optimization vol.74, pp.3, 2014, https://doi.org/10.12989/sem.2020.74.3.325