References
- Alghamdi, A.A.A. (2001), "Adaptive imperfect column with piezoelectric actuators", J. Intel. Mat. Syst. Str., 12(3), 183-189. https://doi.org/10.1106/UA0K-QWXQ-P8KL-G3K2
- Baz, A. and Tampe, L. (1989), "Active control of buckling of flexible beams", Proceedings of the ASME Design and Technology Conference, DE-Vol. 16, Montreal, Canada.
- Baz, A., Ro, J., Mutua, M. and Gilheany, J. (1991), "Active buckling control of nitinol-reinforced composite beams", Proceedings of the Active Materials and Adaptive Structures Conference, Alexandria, Virginia.
- Berlin, A.A. (1994), Towards intelligent structures active control of buckling, Ph.D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
- Berlin, A.A, Chase, J.G., Yim, M.H., Maclean, B.J., Olivier, M. and Jacobsen, S.C. (1998), "MEMS-Based control of structural dynamic instability", J. Intell. Mat. Syst. Str., 9(7), 574-586 https://doi.org/10.1177/1045389X9800900709
- Bilgehan, M. (2011), "Comparison of ANFIS and NN models-With a study in critical buckling load estimation", Appl. Soft Comput., 11(4), 3779-3791. https://doi.org/10.1016/j.asoc.2011.02.011
- Bilgehan, M., Gurel, M.A., Pekgokgoz, R.K. and Kisa, M. (2012), "Buckling load estimation of cracked columns using artificial neural network modeling technique", J. Civil Eng. Manage., 18(4), 568-579. https://doi.org/10.3846/13923730.2012.702988
- Cevik, A., Atmaca, N., Ekmekyapar, T. and Guzelbey, I.H. (2009), "Flexural buckling load prediction of aluminium alloy columns using soft computing techniques", Expert Syst. Appl., 36(3), 6332-6342. https://doi.org/10.1016/j.eswa.2008.08.011
- Chase, J.G. and Bhashyam, S. (2001), "Optimal stabilization of indefinite plate buckling problems", Smart Mater. Struct., 10(4), 786-793. https://doi.org/10.1088/0964-1726/10/4/324
- Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation". J. Intell. Fuzzy Syst., 2, 267-278. https://doi.org/10.1109/91.324806
- Fausett, L. (1994), Fundamentals of neural networks, Prentice Hall (Englewood Cliffs, NJ).
- Gurel, M.A., (2007), "Buckling of slender prismatic circular columns weakened by multiple edge cracks", Acta Mech., 188(1-2), 1-19. https://doi.org/10.1007/s00707-006-0386-8
- Jain, P. and Deo, M.C. (2006), "Neural networks in ocean engineering", SAOS, 1(1), 25-35.
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neuro-fuzzy and soft computing, a computational approach to learning and machine intelligence, Prentice Hall.
- Kapuria, S. and Achary, G.G.S. (2006), "Nonlinear coupled zigzag theory for buckling of hybrid piezoelectric plates", Compos. Struct., 74(3), 253-264. https://doi.org/10.1016/j.compstruct.2005.04.010
- Kundu, C.K., Maiti, D.K. and Sinha, P.K. (2007), "Post buckling analysis of smart laminated doubly curved shells", Compos Struct., 81(3), 314-322. https://doi.org/10.1016/j.compstruct.2006.08.023
- Maurini, C., Pouget, J. and Vidoli, S. (2007), "Distributed piezoelectric actuation of a bistable buckled beam". Eur. J. Mech. A - Solid, 26(5), 837-853. https://doi.org/10.1016/j.euromechsol.2007.02.001
- Meressi, T. and Paden, B. (1993), "Buckling control of afl exible beam using piezoelectric actuators", J. Guid. Control Dynam., 16(5), 977-980. https://doi.org/10.2514/3.21113
- Nezamabadi, A.R. and Karimi Khorramabadi, M. (2010), "Mechanical buckling of Engesser-Timoshenko beams with a pair of piezoelectric layers", Acad. Sci. Eng. Technol., 71, 491-494.
- Oh, I.K., Han, J.H. and Lee, I. (2000), "Postbuckling and vibration characteristics of piezolaminated composite plate subject to thermopiezoelectric load", J. Sound Vib., 233(1), 19-40. https://doi.org/10.1006/jsvi.1999.2788
- Oh, I.K., Han, J.H. and Lee, I. (2001), "Thermopiezoelastic snapping of piezolaminated plates using layerwise non-linear finite elements", AIAA J., 39(6), 1188-1197. https://doi.org/10.2514/2.1434
- Rajaee, T., Mirbagheri, S.A., Zounemat-Kermani, M. and Nourani, V. (2009), "Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models", Sci. Total Environ., 407(17), 4916-4927. https://doi.org/10.1016/j.scitotenv.2009.05.016
- Samarasinghe, S. (2007), Neural networks for applied sciences and engineering from fundamentals to complex pattern recognition, Auerbach Publications, Taylor & Francis Group, LLC.
- Shariyat, M. (2009), "Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties", Compos. Struct., 88(2), 228-239. https://doi.org/10.1016/j.compstruct.2008.03.044
- Sheidaii, M.R. and Bahraminejad, R. (2012), "Evaluation of compression member buckling and post-buckling behavior using artificial neural network", J. Constr. Steel Res., 70, 71-77. https://doi.org/10.1016/j.jcsr.2011.10.020
- Shen, H.S. (2001), "Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators", Compos. Sci. Technol., 61(13), 1931-143. https://doi.org/10.1016/S0266-3538(01)00099-9
- Thompson, S.P. and Loughlan, J. (1995), "The active buckling control of some composite column strips using piezoceramic actuators", Compos. Struct, 32(1-4), 59-67. https://doi.org/10.1016/0263-8223(95)00048-8
- Varelis, D. and Saravanos D. (2002), "Nonlinear coupled mechanics and initial buckling of composite plate with piezoelectric actuators and sensors", Smart Mater. Struct., 11(3), 330-336. https://doi.org/10.1088/0964-1726/11/3/302
- Waszczyszyn, Z. and Bartczak, M. (2002), "Neural prediction of buckling loads of cylindrical shells with geometrical imperfection", Int. J. Nonlinear Mech., 37(4-5), 763-775. https://doi.org/10.1016/S0020-7462(01)00111-1
- Weiland, R. and Mirschel, W. (2008), "Adaptive fuzzy modelling versus artificial neural networks", Environ. Model. Softw., 23(2), 215-224. https://doi.org/10.1016/j.envsoft.2007.06.004
Cited by
- Size-dependent effects on electromechanical response of multilayer piezoelectric nano-cylinder under electro-elastic waves vol.125, 2015, https://doi.org/10.1016/j.compstruct.2015.01.046
- Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models vol.26, pp.2, 2014, https://doi.org/10.12989/sss.2020.26.2.175
- Accelerated System-Level Seismic Risk Assessment of Bridge Transportation Networks through Artificial Neural Network-Based Surrogate Model vol.10, pp.18, 2014, https://doi.org/10.3390/app10186476
- Employing TLBO and SCE for optimal prediction of the compressive strength of concrete vol.26, pp.6, 2014, https://doi.org/10.12989/sss.2020.26.6.753