DOI QR코드

DOI QR Code

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata (Department of Mechanical Engineering, B.M.S Evening College of Engg) ;
  • Raja, S. (Structural Technologies Division, CSIR-National Aerospace Laboratories) ;
  • Munikenche, T. (Principal, S.J.C. institute of Technology)
  • Received : 2012.04.11
  • Accepted : 2013.03.05
  • Published : 2014.01.25

Abstract

The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

Keywords

References

  1. Baillargeon, B.P. and Vel, S.S. (2005), "Active vibration suppression of sandwich beams using piezoelectric shear actuators: experiments and numerical simulations", J. Intel. Mater. Syst. Str., 16(6), 517-530. https://doi.org/10.1177/1045389X05053154
  2. Benjeddou, A., Trindade, M.A. and Ohayon, R. (1999), "New shear actuated smart structure beam finite element", AIAA J., 37(3), 378-383. https://doi.org/10.2514/2.719
  3. Ikeda, T., Raja, S. and Ueda, T. (2010), "Deformation of a beam with partially debonded piezoelectric actuators", J. Intel. Mater. Syst. Str., 21(4), 453-468. https://doi.org/10.1177/1045389X09356486
  4. Kapuria, S and Yaqoob Yasin, M, (2010), "Active vibration control of piezoelectric laminated beams with electrode actuators and sensors using an efficient finite element involving an electric node", Smart Mater. Struct, 19(4), 1-15.
  5. Kapuria, S. and Hagedom, P. (2007), "Unified efficient layerwise theory for smart beams with segmented extension/shear mode, piezoelectric actuators and sensors", J. Mech. Mater. Struct., 2 (7), 1267-1297. https://doi.org/10.2140/jomms.2007.2.1267
  6. Kapuria, S., and Alam, N. (2006), "Efficient layerwise finite element model for dynamic analysis of laminated piezoelectric beams", Comput Method Appl. M., 195(19-22),2742-2760. https://doi.org/10.1016/j.cma.2005.06.008
  7. Kapuria, S., Kumari, P and Nath, J.K, (2010), "Efficient modeling of smart piezoelectric composite laminate-A review", Acta Mech., 214(1-2), 31-48. https://doi.org/10.1007/s00707-010-0310-0
  8. Khadeir, A.A. and Aldreihm, O.J. (2001), "Deflection analysis of beams with extension and shear piezoelectric patches using discontinuity functions", Smart Mater. Struct., 10 (2), 212-220. https://doi.org/10.1088/0964-1726/10/2/306
  9. Koconis, D.B., Kollar, K.P. and Springer, G.S. (1994), "Shape control of composite plates and shells with embedded actuators, I- voltages specified", J. Compos. Mater., 28(3) 415-458. https://doi.org/10.1177/002199839402800503
  10. Kumar, R., Mishra, B. K. and Jain, S.C. (2008), "Static and dynamic analysis of smart cylindrical shell", Finite Elem. Anal. Des., 45(1), 13-24. https://doi.org/10.1016/j.finel.2008.07.005
  11. Kusculuoglu, Z.K., Fallahi, B. and Royston, T.J. (2004), "Finite element model of a beam with piezoceramic patch actuator", J. Sound Vib., 276(1-2), 27-44. https://doi.org/10.1016/j.jsv.2003.07.014
  12. Lee, H.J. (2005), "Layerwise laminate analysis of functionally graded piezoelectric bimorph beams", J. Intel. Mater. Syst. Str., 16(4),365-371. https://doi.org/10.1177/1045389X05050100
  13. Li, Y.Y., Cheng, L., Yam, L.H. and Yan, Y.J. (2003), "Numerical modeling of a damaged plate with piezoelectric actuation", Smart Mater. Struct., 12(4), 524-532. https://doi.org/10.1088/0964-1726/12/4/303
  14. Mujumdar, P.M. and Suryanaryana, S. (1988), "Flexural vibrations of beams with delaminations", J. Sound Vib., 125(3), 441-461. https://doi.org/10.1016/0022-460X(88)90253-2
  15. Manjunath, T.C. and Bandyopadhyay, B. (2009),"Vibrational control of Timoshenko smart structures using multirate output feedback based discrete sliding mode control for SISO systems", J. Sound Vib., 326 (1-2), 50-74. https://doi.org/10.1016/j.jsv.2009.04.034
  16. Nagendra K.D., Raja, S. and Ikeda, T. (2007), "Active vibration control of smart plates with partially debonded multi-layered PZT actuators", Smart Mater. Struct., 16(5), 1584-1594. https://doi.org/10.1088/0964-1726/16/5/012
  17. Raja, S., Prathap, G. and Sinha, P.K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators", Smart Mater. Struct., 11(1), 63-71. https://doi.org/10.1088/0964-1726/11/1/307
  18. Raja, S., Sreedeep, Rand Prathap, G. (2004), "Bending behavior of hybrid-actuated piezoelectric sandwich beams", J. Intel. Mater. Syst. Str., 15 (8) 611-619. https://doi.org/10.1177/1045389X04042790
  19. Seeley, C.E. and Chattopadyay, A. (1999), "Modeling of adaptive composites including debonding", Int. J. Solids Struct, 36(12),1823 -1843. https://doi.org/10.1016/S0020-7683(98)00061-4
  20. Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J.S.D. (2011), "An efficient $C^{0}$ FE model for the analysis of composites and sandwich laminates with generallayup", Lat. Am. J. Solids. Struct, 8(2), 197-212. https://doi.org/10.1590/S1679-78252011000200006
  21. Sun, D. and Tong, L. (2004), "An equivalent model for smart beams with debonded piezoelectric patches", J. Sound Vib, 276(3-5), 933-956. https://doi.org/10.1016/j.jsv.2003.08.018
  22. Sun, D., Tong, L. and Satya, N.A. (2001), "Effects of piezoelectric sensor/actuator debonding on vibration control of smart beams", Int. J. Solids Struct., 38(50-51), 9033-9051. https://doi.org/10.1016/S0020-7683(01)00180-9
  23. Wang, S.Y. (2004), "A finite element model for the static and dynamic analysis of piezoelectric bimorph", Int J. Solids Struct, 41(15), 4075-4096. https://doi.org/10.1016/j.ijsolstr.2004.02.058
  24. www.sparklercerarnics.com/piezoelectric properties.html, Sparkler Ceramics Pvt Ltd
  25. Zhang, X.D. and Sun, C.T. (1996), "Formulation of an adaptive sandwich beam", J. Intel. Mater. Syst. Str., 5 (6),814-823.

Cited by

  1. Actuation Performance of Active Composite Beams with Delamination vol.249, 2016, https://doi.org/10.1016/j.sna.2016.08.023
  2. Improved finite element modeling of piezoelectric beam with edge debonded actuator for actuation authority and vibration behaviour vol.13, pp.1, 2017, https://doi.org/10.1007/s10999-015-9314-1
  3. Study on low frequency energy harvesting system in laminated aluminum beam structures with delamination vol.32, pp.5, 2018, https://doi.org/10.1007/s12206-018-0406-3
  4. Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2014, https://doi.org/10.12989/sss.2020.26.6.721
  5. Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2014, https://doi.org/10.12989/sss.2020.26.6.721