References
- S. A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl. (4) 71 (1966), 61-72. https://doi.org/10.1007/BF02413733
- A. Azizi, Weakly prime submodules and prime submodules, Glasg. Math. J. 48 (2006), no. 2, 343-346. https://doi.org/10.1017/S0017089506003119
- M. Baziar and M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8 (2009), no. 3, 351-362. https://doi.org/10.1142/S0219498809003369
- M. Baziar, M. Behboodi, and H. Sharif, Uniformly classical primary submodules, Comm. Algebra 40 (2012), no. 9, 3192-3201. https://doi.org/10.1080/00927872.2011.561510
- M. Behboodi, Classical prime submodules, Ph.D Thesis, Chamran University Ahvaz Iran 2004.
- M. Behboodi, A generalization of the classical krull dimension for modules, J. Algebra 305 (2006), no. 2, 1128-1148. https://doi.org/10.1016/j.jalgebra.2006.04.010
- M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar. 113 (2006), no. 3, 239-250.
- M. Behboodi, A generalization of Baer's lower nilradical for modules, J. Algebra Appl. 6 (2007), no. 2, 337-353. https://doi.org/10.1142/S0219498807002284
- M. Behboodi, On the prime radical and Baer's lower nilradical of modules, Acta Math. Hungar. 122 (2009), no. 3, 293-306. https://doi.org/10.1007/s10474-008-8028-3
- M. Behboodi and H. Koohy, Weakly prime modules, Vietnam J. Math. 32 (2004), no. 2, 185-195.
- M. Behboodi and M. J. Noori, Zariski-like topology on the classical prime spectrum of a module, Bull. Iranian Math. Soc. 35 (2009), no. 1, 255-271.
- M. Behboodi and S. H. Shojaei, On chains of classical prime submodules and dimension theory of modules, Bull. Iranian Math. Soc. 36 (2010), no. 1, 149-166.
- J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1976), 156-181.
- M. Ferrero and M. M. Parmenter, A note on Jacobson rings and polynomial rings, Proc. Amer. Math. Soc. 105 (1989), no. 2, 281-286. https://doi.org/10.1090/S0002-9939-1989-0929416-7
- K. Fujita and S. Itoh, A note on Noetherian Hilbert rings, HiroshimaMath. J. 10 (1980), no. 1, 153-161.
- O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z. 54 (1951), 136-140. https://doi.org/10.1007/BF01179855
- K. R. Goodearl and R. B. Warfild, An Introduction to Noncommutative Noetherian Rings, London Mathematical socity. Student Texts 16, Camberidge University Press, Cambrige 1989.
- T. Hungerford, Algebra, Springer-verlag 1997.
- A. Kaucikas and R.Wisbauer, Noncommutative Hilbert rings. J. Algebra Appl. 3 (2004), no. 4, 437-443. https://doi.org/10.1142/S0219498804000964
- M. Maani Shirazi and H. Sharif, Hilbert modules, Int. J. Pure Appl. Math. 20 (2005), no. 1, 1-7.
- C. Procesi, Noncommutative Jacobson rings, Ann. Scuola Norm. Sup. Pisa 21 (1967), 281-290.
- L. J., Jr. Ratliff, Hilbert rings and the chain condition for prime ideals, J. Reine Agnew. Math. 283/284 (1976), 154-163.
- J. F. Watters, Polynomial extensions of Jacobson rings, J. Algebra 36 (1975), no. 2, 302-308. https://doi.org/10.1016/0021-8693(75)90105-2
- J. F. Watters, The Brown-McCoy radical and Jacobson rings, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 24 (1976), no. 2, 91-99.
- R. Wisbauer, Foundations of Modules and Ring Theory, Gordon and Breach Reading, 1991.