References
- Falkner, H. and Teutsch, M. (1993), Comparative Investigations of Plain and Steel Fibre Reinforced Industrial Ground Slabs, Institut Fur Baustoffe, Massivbau and Brandschutz, Technical University of Brunswick, Germany.
- Lok, T.S. and Pei, S.J. (1998), "Flexural behaviour of steel fiber reinforced concrete", J. Mater. Civil Eng., 10, 86-97. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:2(86)
- CIA (2003), Fibers in Concrete: Current Practice Note 35, Concrete Institute of Australia, Australia.
- Roesler, J.R., Lange, D.A., Altoubat, S.A., Rieder, K.A. and Ulreich, G.R. (2004), "Fracture of plain and fiber-reinforced concrete slabs under monotonic loading", J. Mater. Civil Eng., ASCE, 16, 452-460. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:5(452)
- Khaloo, A.R. and Afshari, M. (2005), "Flexural behaviour of small steel fiber reinforced concrete slabs", Cement Concrete Compos., 27, 141-149. https://doi.org/10.1016/j.cemconcomp.2004.03.004
- Falkner, H., Huang, Z. and Teutsch, M. (1995), "Comparative study of plain and steel fiber reinforced concrete ground slabs", Concrete Int., 17(1), 45-51.
- Smith, S.T. and Gilbert, R.I. (2003), "Tests on RC slabs reinforced with 500 MPa welded wire fabric", Austr. J. Civil Eng., 1(1), 69-75.
- Patrick, M. (2005), "Safe design of slabs incorporating class L mesh: latest design advice about AS3600", SRIA Technical Paper, 23-27.
- Gilbert, R.J. and Smith, S.T. (2006), "Strain localization and its impact on the ductility of reinforced concrete slabs containing 500 MPa reinforcement", Adv. Struct. Eng., 9(1), 117-127. https://doi.org/10.1260/136943306776232837
- Gilbert, R.I. and Sakka, Z.I. (2007), "Effect of reinforcement type on the ductility of suspended reinforced concrete slabs", J. Struct. Eng., ASCE, 133(6), 834-843. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(834)
- Gilbert, R.I. (2009), "Restrictions on the use of Class L reinforcement in AS3600-2009", Concrete Australia, 35(3), 31- 36.
- Foster, S. and Kilpatrick, A. (2008), "The use of low ductility welded wire mesh in the design of suspended reinforced concrete slabs", Austr. J. Struct. Eng., 8(3), 237-248. https://doi.org/10.1080/13287982.2008.11465001
- AS/NZS 4671 (2001), Steel reinforcing materials, Standards Australia/ Standard New Zealand, Sydney.
- Warner, R.F., Rangan, B.V., Hall, A.S. and Faulkes, K.A. (1998), Concrete Structures, Longman, Melbourne, Australia.
- AS3600 (2009), Concrete structures, Standards Australia, Sydney.
- Kilver, J. (2004), Ductility Requirements for Reinforced Concrete Structures, Institut fur Massivbau and Baustofftechnologie, Universitat Leipzig, LACER No. 9.
- AS1012.9 (1999), Methods of testing concrete: Determination of the compressive strength of concrete specimens, Standards Australia, Sydney.
- AS1012.11 (2000), Methods of testing concrete: Determination of the modulus of rupture, Standards Australia, Sydney.
- Sakka, Z. (2009), "Impact of steel ductility on the structural behaviour and strength of RC slabs", Ph.D. Dissertation, University of New South Wales, Sydney.
Cited by
- High performance fibre reinforced cement concrete slender structural walls vol.2, pp.4, 2014, https://doi.org/10.12989/acc.2014.2.4.309
- Structural Behavior of Two-Way Slabs Reinforced with Low-Ductility WWF vol.143, pp.12, 2017, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001902
- Impact resistance of polypropylene fiber reinforced concrete two-way slabs vol.62, pp.3, 2017, https://doi.org/10.12989/sem.2017.62.3.373
- Ductility of Concrete Members Reinforced with Welded Wire Reinforcement (WWR) vol.191, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2019.04.081
- Investigating the Mechanical Properties and Fracture Behavior of Welded-Wire Reinforcement vol.33, pp.4, 2014, https://doi.org/10.1061/(asce)mt.1943-5533.0003622