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ON STEIN TRANSFORMATION IN SEMIDEFINITE LINEAR

COMPLEMENTARITY PROBLEMS

YOON J. SONG∗ AND SEON HO SHIN

Abstract. In the setting of semidefinite linear complementarity problems
on Sn, we focus on the Stein Transformation SA(X) := X − AXAT , and
show that SA is (strictly) monotone if and only if νr(UAUT ◦ UAUT ) (<
) ≤ 1, for all orthogonal matrices U where ◦ is the Hadamard product and

νr is the real numerical radius. In particular, we show that if ρ(A) < 1
and νr(UAUT ◦ UAUT ) ≤ 1, then SDLCP(SA, Q) has a unique solution
for all Q ∈ Sn. In an attempt to characterize the GUS-property of a
nonmonotone SA, we give an instance of a nonnormal 2 × 2 matrix A

such that SDLCP(SA, Q) has a unique solution for Q either a diagonal or
a symmetric positive or negative semidefinite matrix. We show that this
particular SA has the P′

2-property.
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1. Introduction

Given a continuous function f from a real Hilbert space H into itself and a
closed convex set K in H, the variational inequality problem VI(f,K) is to find
a vector x∗ in H such that

x∗ ∈ K and ⟨f(x∗), x− x∗⟩ ≥ 0 ∀x ∈ K. (1)

This problem has been extensively studied in the literature. In the infinite
dimensional setting, it appears in the study of partial differential equations,
mechanics, etc. [17]. In the finite dimensional setting, it appears in optimization,
economics, traffic equilibrium problems etc. [13].
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Now suppose K is a cone, i.e., tK ⊆ K for all t ≥ 0. Then by putting x = 0
and x = 2x∗, the condition

⟨f(x∗), x− x∗⟩ ≥ 0 ∀x ∈ K (2)

leads to
⟨f(x∗), x∗⟩ = 0. (3)

If we define the dual cone K∗ of K by

K∗ := {y ∈ H : ⟨x, y⟩ ≥ 0 ∀x ∈ K}, (4)

then, (2) and (3) together imply that f(x∗) ∈ K∗.
So when K is a closed convex cone, (1) becomes the problem of finding an

x∗ ∈ H such that

x∗ ∈ K, f(x∗) ∈ K∗, and ⟨x∗, f(x∗)⟩ = 0. (5)

This is a cone complementarity problem. This problem and its special cases
often arise in optimization (Karush-Kuhn-Tucker conditions), game theory (bi-
matrix games), mechanics (contact problem, structural engineering), economics
(equilibrium in a competitive economy) etc. For a detailed description of these
applications, we refer to [16], [6], [5], [20], [21]. In this paper, we focus on the
so-called semidefinite linear complementarity problem (SDLCP) introduced by
Gowda and Song [8]: Let Sn denote the space of all real symmetric n×n matri-
ces, and Sn

+ be the set of symmetric positive semidefinite matrices in Sn. With
the inner product defined by ⟨Z,W ⟩ := tr(ZW ), ∀Z,W ∈ Sn, the space Sn

becomes a Hilbert space. Clearly, Sn
+ is a closed convex cone in Sn. Given a

linear transformation L : Sn → Sn and a matrix Q ∈ Sn, the semidefinite linear
complementarity problem, denoted by SDLCP(L,Q), is the problem of finding a
matrix X ∈ Sn such that

X ∈ Sn
+, Y := L(X) +Q ∈ Sn

+, and ⟨X,Y ⟩ = 0. (6)

Examples of the semidefinite linear complementarity problem are: the stan-
dard linear complementarity problem [4], the block SDLCP [27], and the geomet-
ric SDLCP of Kojima, Shindoh, and Hara [18]. For detalils on how to reformulate
these as the SDLCP of Gowda and Song (6), we refer to the Ph.D. Thesis of
Song (Section 1.3 [22]). We give the description of the standard linear comple-
mentarity problem here that is needed in the paper. Consider the Euclidean
space Rn with the cone of nonnegative vectors Rn

+. Given a matrix M ∈ Rn×n

and a vector q ∈ Rn, the linear complementarity problem LCP(M, q) is to find
a vector in Rn such that

x ∈ Rn
+, y := Mx+ q ∈ Rn

+, and ⟨x, y⟩ = 0, (7)

where ⟨x, y⟩ is the usual inner product in Rn. This problem has been studied in
great detail, see [4], [6], [5], [20]. In this setting, we have the following result:

(a) (3.3.1, 3.3.7. [4]) LCP(M, q) has a unique solution for any given q ∈ Rn

if and only if M is a P-matrix (that is, all its principal minors are
positive).
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(b) (3.3.4. [4]) M is a P-matrix if and only if

zi(Mz)i ≤ 0 ∀i =⇒ z = 0,

where yi denotes the ith element of the vector y.

As mentioned above, the standard linear complementarity problem is a special
case of the semidefinite linear complementarity problem in the following way
[22]:

Let a matrix M ∈ Rn×n and a vector q ∈ Rn be given. Define a linear
transformation M : Sn → Sn by M(X) := Diag(Mdiag(X)), where diag(X) is
a vector whose entries are the diagonal entries of the matrix X, and Diag(u) is
a diagonal matrix whose diagonal is the vector u. Corresponding to LCP(M, q)
in (7), one can consider SDLCP(M, Diag(q)), which is to find X ∈ Sn such that
X ∈ Sn

+, Y := M(X) + Diag(q) ∈ Sn
+, and ⟨X,Y ⟩ = 0. If X is a solution of

SDLCP(M, Diag(q)), then diag(X) solves LCP(M, q). Conversely, if x solves
LCP(M, q), then Diag(x) solves SDLCP(M, Diag(q)). In this sense, these two
complementarity problems are equivalent.

We want to note that the cone of nonnegative vectors Rn
+ in Rn is polyhedral.

That is, Rn
+ is the intersection of a finite number of sets defined by linear inequal-

ities. However, the cone of symmetric positive semidefinite matrices Sn
+ in Sn

is not polyhedral. We want to note that because of the nonpolyhedrality of the
cone Sn

+ and the noncommutativity of the matrix product, the results available
for the standard linear complementarity problem do not simply carry over to the
SDLCPs. To ellaborate on this, for example, consider the so-called the P and
GUS-properties introduced by Gowda and Song [8]: A linear transformation
L : Sn → Sn has the

(c) P-property if [XL(X) = L(X)X negative semidefinite] =⇒ X = 0,
(d) Globally Uniquely Solvable (GUS)-property if for all Q ∈ Sn, the

semidefinite linear complementarity problem (6) SDLCP(L,Q) has a
unique solution.

Note that (c) is an analogus definition to (b) and in the LCP case, P ⇐⇒ GUS
(see (a)). Does the equivalence still hold for SDLCPs? Authors [7], [1], [12]
specialized these properties to the Lyapunov transformation LA(X) := AX +
XAT , the Stein transformation SA(X) := X − AXAT , the two-sided multi-
plication transformation MA(X) := AXAT , and studied interconnections with
the (global) asymptotic stability of the continuous and discrete linear dynamical
systems (see Introduction of [12])

dx

dt
= −Ax(t), and x(k + 1) = Ax(k). (8)

Gowda and Song showed that (Thm 5 [8]) the Lyapunov transformation
LA(X) := AX + XAT has the P-property if and only if A is positive stable
(i.e., every eigenvalue of A has a positive real part) and hence the continu-
ous system in (8) is globally asymptotically stable [19]; and has (Thm 9 [8])
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the GUS-property if and only if A is positive stable and positive semidefinite.
Therefore, the P and GUS properties are not equivalent in SDLCP setting.

Bhimasankaram et al. [1] showed that for the two-sided multiplication trans-
formation MA(X) := AXAT , GUS and P are both equivalent to A being posi-
tive definite or negative definite. Zhang [28], in particular, looked at a problem
of solving the matrix equation AXAT + BY BT = C seeking a solution X ≽ 0
for given matrices A,B and C and provided necessary and sufficient conditions.

Gowda and Parthasarathy (Theorem 11, Remark 4 [7]) showed that the Stein
transformation SA(X) := X−AXAT has the P-property if and only if ρ(A) < 1
and hence the discrete system in (8) is globally asymptotically stable [23] .
However, the characterization of the GUS-property of the Stein transformation
is still open. The known results so far are in 2003, Gowda, Song, and Ravindran
(Thm 3 [11]) showed that if SA is strictly monotone (that is, ⟨X,SA(X)⟩ > 0 for
all 0 ̸= X ∈ Sn), then SA has the GUS-property; If A is normal, the converse
also holds. Moreover, in 2013, J. Tao [26] examined conditions which gives the
so-called Cone-GUS-property (that is, SDLCP(SA, Q) has a unique solution
for all Q ∈ Sn

+ .
Therefore, the aims of this paper are to give a characterization of SA being

strictly monotone in terms of the real numerical radius of A and hence providing
a sufficient condition for the GUS-property of SA; and to examine a particular
instance of A so that SDLCP(SA, Q) has a unique solution for all Q diagonal
or symmetric negative semidefinite. The main results of the paper are as
follows: In section 2, we show that the Stein Transformation SA is (strictly)
monotone if and only if νr(UAUT ◦UAUT ) (<) ≤ 1 for all U orthogonal, where ◦
denotes the Hadamard product and νr denotes the real numerical radius defined
in this paper (see Section 2). In particular, if ρ(A) < 1 and νr(UAUT ◦UAUT ) ≤
1, then SDLCP(SA, Q) has a unique solution for all Q ∈ Sn. As a by-product,
we get a result that if tr(AAT ) > n, then SA is not monotone. In section 3, we
look at a particular case of the 2× 2 matrix A (motivated by [10]):

A =

[
0 0
γ 0

]
,

and show that SDLCP(SA, Q) has a unique solution if Q is either a diago-
nal or a symmetric negative semidefinite matrix. Moreover, we show that not

only SA but also every principal subtransformations of ŜA defined by ŜA(X) =
PTSA(PXPT )P, P ∈ Rn×n invertible (X ∈ Sn) has the Cone-Gus-properties.

We list below some necessary definitions:

(a) A linear transformation L : Sn → Sn is called monotone if ⟨L(X), X⟩ ≥
0 ∀X ∈ Sn; strictly monotone if ⟨L(X), X⟩ > 0 for all nonzeroX ∈ Sn.

(b) A linear transformation L : Sn → Sn is said to have the
– Cone-Gus-property if for all Q in the cone of symmetric positive

semedefinite matrices, SDLCP(L,Q) has a unique solution.
– P′

2-property if X ≽ 0, XL(X)X ≼ 0 =⇒ X = 0.
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– Cross Commutative property if for anyQ ∈ Sn and for any two
solutions X1 and X2 of SDLCP(L,Q), X1Y2 = Y2X1 and X2Y1 =
Y1X2, where Yi = L(Xi) +Q (i = 1, 2).

(c) A matrix M ∈ Rn×n is called
– positive semidefinite if ⟨Mx, x⟩ ≥ 0 for all x ∈ Rn. If M is symmet-

ric positive semidefinite, we use the notation M ≽ 0. The notation
M ≼ 0 means −M ≽ 0. Note that a nonsymmetric matrix M is
positive semidefinite if and only if the symmetric matrix M +MT

is positive semidefinite.
– positive definite if ⟨Mx, x⟩ > 0 for all nonzero x ∈ Rn. If M is

symmetric positive definite, we use the notation M ≻ 0.
– P-matrix if all its principal minors are positive.
– orthogonal if MMT = MTM = I, where I is the n × n identity

matrix.
– normal if MMT = MTM.

(d) The Hadamard product (or Schur product) of two matrices A and B is
the entrywise product of A and B.

2. Characterization of the Monotonicity of the Stein Transformation

Recall [14] that the Numerical Radius of an n × n matrix A is defined as
ν(A) = max{|xTAx| : ∥x∥ = 1, x ∈ Cn}, where ∥x∥ denotes the Euclidean norm
of the vector x. Here we define the real version of the Numerical Radius for a
real matrix A ∈ Rn×n as

νr(A) := max{|xTAx| : ∥x∥ = 1, x ∈ Rn}
and relate it with the monotonicity of the Stein Transformation SA.
Example For r > 0, let

A =

[
0 −r
r 0

]
∈ R2×2.

Since xTAx = 0 for all x, ν(A) = νr(A) = 0.

Note that for a square matrix A, ρ(A) ≤ ν(A) since each square matrix A
has an eigenvector in Cn, but this inequality is not necessarily true for νr(A).
See in the above example that σ(A) = {±ir} and therefore ρ(A) = r > νr(A),
where ρ(A) denotes the spectral radius of A and σ(A) is the spectrum of A
(i.e., the set of all eigenvalues of A). We also note that for a square matrix A,

νr(A) = ρ

(
A+AT

2

)
because |xTAx| = |xTATx| and 1

2 (A+AT ) is a symmetric

matrix.
We characterize the monotonicity of SA in terms of the real numerical radius.

Theorem 2.1. For A ∈ Rn×n, the Stein Transformation SA : Sn → Sn, SA(X)
:= X − AXAT is (strictly) monotone if and only if for all orthogonal matrices
U , νr(UAUT ◦ UAUT ) (<) ≤ 1.
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Proof. Suppose SA is monotone. Then ⟨SA(D), D⟩ ≥ 0, where D is a diagonal
matrix with the diagonal equals a unit vector d. Note that

0 ≤ ⟨SA(D), D⟩ = ⟨D,D −ADAT ⟩ = 1− tr(ADATD) = 1− ⟨d, (A ◦A)d⟩,
and hence νr(A ◦A) ≤ 1. Since SA is monotone, SUAUT is also monotone for all
orthogonal matrices U . Therefore, νr(UAUT ◦ UAUT ) ≤ 1. For the converse,
let B = UAUT and suppose νr(B ◦ B) ≤ 1 for all orthogonal matrices U . Take
X ∈ Sn, then X = UDUT where D is a diagonal matrix with the diagonal d.
Upon replacing X by UDUT and carrying out the calculation we get

⟨SA(X), X⟩ = tr(UD2UT )− tr(BDBTD) = ∥d∥2
(
1− ⟨ d

∥d∥
, (B ◦B)

d

∥d∥
⟩
)

as tr(BDBTD) = ⟨d, (B ◦ B)d⟩. By our assumption νr(B ◦ B) ≤ 1, therefore
⟨SA(X), X⟩ ≥ 0 for all X ∈ Sn. Hence SA is monotone.
The proof for strict monotonicty is similar. �

Remark 2.1. (a) If we let B = UAUT , then νr(B ◦B) can be computed as

νr(B ◦B) = ρ
(

(B◦B)+(B◦B)T

2

)
= ∥(B ◦B) + (B ◦B)T ∥op, where ∥ · ∥op

denotes the operator norm induced by the Euclidean vector norm.
(b) Chen and Qi in 2006 [3] introduced the Cartesian P -property which is

equivalent to the strict monotonicty in some special case (p179 [3]) and
showed that (Corollary 1 [3]) a linear transformation L : Sn → Sn is
strictly monotone if and only if for any 0 ̸= X ∈ Sn and any U orthogo-
nal, there exists an index i ∈ {1, · · · , n} such that [UXL(X)UT ]ii > 0,
where [M ]ij is the (i, j)-component of the matrix M . We also gave suffi-
cent and necessary conditions for monotocity in Theorem 2 above when
L is restricted to SA. We think our result is easier in view of computa-
tions involved because in Chen and Qi, it involves both random nonzero
symmetric matrices X and orthogonal matrices U to verify the condi-
tion. However, our result involves only orthogonal matrices. There are
numerical methods to radomly generate orthogonal matrices, for exam-
ple, see [24], and the real numerical radius νr can again be computed
numerically as the operator norm as mentioned in Part(a) above.

We now state a simple check condition for a nonmonotonicity of SA below.

Corollary 2.2. If tr(AAT ) > n for A ∈ Rn×n, then SA is not monotone.

Proof. We shall show that if SA is monotone, then tr(AAT ) ≤ n.
First we observe that for a diagonal matrix D,

⟨SA(D), D⟩ = tr((I −A)D(I +A)TD) = ⟨(I −A) ◦ (I +A)d, d⟩.
Therefore, if SA is monotone, (I − A) ◦ (I + A) is positive semidefinite, as well
as (I−B)◦ (I+B) (for SA monotone implies SB monotone) for all B = UAUT ,
where U is an arbitrary orthogonal matrix.
Suppose SA is monotone. Then (I−A)◦(I+A) = I−A◦A is positive semidefinite
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which means ⟨e, (I −A ◦A)e⟩ ≥ 0, where e is the vector of all 1’s. This reduces
to ⟨e, e⟩− ⟨e, (A ◦A)e⟩ ≥ 0. Since ⟨e, e⟩ = n and ⟨e, (A ◦A)e⟩ = tr(AAT ), we get
the desired result. �

We state below a sufficient condition for SA to be GUS in terms of the matrix
A.

Theorem 2.3. For A ∈ Rn×n, if ρ(A) < 1, νr(UAUT ◦ UAUT ) ≤ 1 for all
orthogonal matrices U, then SA has the GUS-property.

Proof. The condition ρ(A) < 1 is equivalent to SA having the P-property which
is also equivalent to the existence of the solution to SDLCP(SA, Q) for all Q ∈
Sn. (Thm 11, Remark 4 [7]). By Theorem 2, SA is monotone. Suppose there
are two solutions X1 and X2 to SDLCP(SA, Q). Let Yi = SA(Xi) + Q, i =
1, 2. Thus, 0 ≤ ⟨SA(X1 − X2), X1 − X2⟩ = ⟨Y1 − Y2, X1 − X2⟩ ≤ 0 since
tr(X1Y1) = 0 = tr(X2Y2) and Xi, Yi ≽ 0 for i = 1, 2. This leads to tr(X2Y1) +
tr(X1Y2) = 0. Since the involved matrices are all positive semidefinite, each trace
is nonnegative. Hence tr(X2Y1) = 0 = tr(X1Y2), resulting X2Y1 = 0 = X1Y2.
Hence SA has the Cross Commutative-property. It is known (Thm 7 [8]) that
P+CrossCommutativity ⇐⇒ GUS, hence the proof is complete. �

Remark 2.2. As it is seen in the above proof, monotonicity implies the Cross
Commutative-property. Whether monotonicity is equivalent to the Cross Comm-
utative-property is an open problem. This would complete the characterization
of the GUS-property of SA.

3. On a special SA : S2 → S2

In what follows, let RC(X) := Diag(Cxd)+X0, where C ∈ Rn×n is a matrix,
xd is the vector composed of the main diagonal of the matrix X, and X0 is the
matrix obtained after replacing all the diagonal elements of X with zeros. If we

let A =

[
0 0
γ 0

]
, and C = I −A ◦A, then

RC(X) = SA(X) =

[
x1 x2

x2 x3 − γ2x1

]
whereX =

[
x1 x2

x2 x3

]
. (9)

Note that this A is not normal. Motivated by the question raised in (p12,
Problem 2. [10]), we studied this particular instance of SA. So far, the following
is known:

(a) SA has the GUS-property when γ2 ≤ 2 (p12 [10]).
(b) SA is Not GUS when γ2 > 4 (p12 [10]).
(c) SA has the Cone-Gus-property when γ2 ≤ 4. This is obtained by

applying J. Tao’s result on this particular SA. In Corollary 4.1 [25],
it states that SA : S2 → S2 has the Cone-Gus property if and only if
ρ(A) < 1 and I ±A are positive semidefinite matrices.

In [10], Gowda and Song raised the question:
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Is SA GUS when 2 < γ2 ≤ 4?

We were able to show that this SA has the GUS-property regardless of the
value of γ if the given Q is either diagonal or symmetric negative semidefinite.
We start with a lemma which shows that every positive definite solution of an
SDLCP(L,Q) is locally unique if L has the P-property.

Lemma 3.1. Suppose a linear transformation L : Sn → Sn has the P-property.
Then SDLCP(L,Q) cannot have two distinct positive definite solutions.

Proof. Suppose X1 and X2 are two distinct positive definite solutions to a given
SDLCP(L,Q). Then we get X1(L(X1) +Q) = 0 = X2(L(X2) +Q). Since both
X1 and X2 are invertible, this would mean L(X1) = −Q = L(X2). Hence
(X1 −X2)L(X1 −X2) = 0. By the P-property of L, X1 = X2 contradicting our
assumption. �

Now, let’s consider our special SA given in (9). Since all eigenvalues are zeros
for any γ, note that our SA has the P-property for all γ.

Theorem 3.2. Let

A =

[
0 0
γ 0

]
,

where γ a real number. Then

(a) SDLCP(SA, Q) has a unique solution for all Q diagonal and the solution
is diagonal.

(b) SDLCP(SA, Q) has a unique solution for all Q ≼ 0 and the solution is
S−1
A (−Q).

Proof. For part(a), let Q = D, where D is a diagonal matrix. By Proposition
3(ii) of [10], the solution set of SDLCP(SA, D) is equal to the solution set of
LCP(C, d), where C = I − A ◦ A, under obvious modifications (here, d denotes
the vector diag(D)). Since C is a P-matrix (that is, the matrix with all its
principal minors positive) for all γ ∈ R, the assertion follows.
For part(b), if given Q is diagonal, then there is a unique solution by part(a).
Assume Q is a nondiagonal symmetric negative semidefinite matrix. Since −Q ≽
0, we claim that there is a uniqueX ≻ 0 such that SA(X) = −Q. This is because,
for

M =

[
m1 m2

m2 m3

]
, S−1

A (M) =

[
m1 m2

m2 m3 + γ2m1

]
,

and S−1
A is a linear transformation from Sn to Sn that maps a nondiagonal

positive semidefinite matrix into a positive definite matrix; and S−1
A (Sn

+) ⊆ Sn
+.

Therefore, S−1
A (−Q) := X ≻ 0. Note X solves SDLCP(SA, Q). Now suppose

there is X1 ≽ 0 such that Y1 := SA(X1) + Q ≽ 0 and X1Y1 = 0. Then
SA(X1) = Y1 −Q and

X1 = S−1
A (Y1 −Q) = S−1

A (Y1) + S−1
A (−Q) = S−1

A (Y1) +X ≻ 0

because Y1 ≽ 0. Then both X1 and X are positive definite solutions and by
Lemma 7, X1 = X. This completes the proof. �
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In addition to this, in what follows, we show that not only this SA, but also

its variants ŜA(X) := PTSA(PXPT )P, P ∈ Rn×n invertible (X ∈ Sn), all
have the Cone-Gus-properties when γ2 < 4. We achieve this by showing SA

has the so-called P2
′-property and then applying results of J. Tao [26]. The

P2
′-property was introduced by Chandrashekaran et. al [2] in 2010, and J. Tao

showed that (Thm 3.3 [26] interpreted for V = Sn) L has the P2
′-property if and

only if L̂ and all its principal subtransformations have the Cone-Gus properties

where L̂(X) := PTL(PXPT )P, P ∈ Rn×n invertible (X ∈ Sn).

Theorem 3.3. The transformation SA given in (9) has the P2
′-property for

γ2 < 4.

Proof. Let A =

[
0 0
γ 0

]
with γ2 < 4 and X =

[
x1 x2

x2 x3

]
≽ 0.

Suppose XSA(X)X ≼ 0. If X is invertible (i.e., X ≻ 0), then

XSA(X)X = Y ≼ 0 =⇒ SA(X) = X−1Y X−1 ≼ 0

since X−1 is symmetric. Let Q := SA(X) ≼ 0. Then by Theorem 3(b),
SDLCP(SA, Q) has a unique solution and the solution is S−1

A (−Q) which equals

to S−1
A (SA(−X)) by linearity of SA. But this equals −X which is a solution

to SDLCP(SA, Q), and so 0 ≻ −X ≽ 0 which is a contradiction. Therefore, X
can’t be invertible.
Now suppose detX = 0, i.e., x1x3 = x2

2. Carrying out the algebra,

XSA(X)X =

[
2x1x

2
2 + x2

2x3 + x3
1 − x1x

2
2γ

2 0
0 x1x

2
2 + 2x2

2x3 + x3
3 − x1x

2
3γ

2

]
.

Then XSA(X)X ≼ 0 leads to [XSA(X)X]11 ≤ 0 and [XSA(X)X]22 ≤ 0. Upon
putting x2

2 = x1x3 in [XSA(X)X]22, we get

0 ≥ [XSA(X)X]22 = x3(x
2
1+x2

3+(2−γ2)x1x3) = x3((x1−x3)
2+(4−γ2)x1x3) ≥ 0,

because X ≽ 0 and γ2 < 4. Hence the last item in the above equations vanishes,
therefore, we have cases
(i) x3 = 0, or (ii) (x1 − x3)

2 + (4− γ2)x1x3 = 0. For the case (i), if x3 = 0, then
x2 = 0. Then [XSA(X)X]11 leads to 0 ≤ x3

1 ≤ 0. Hence x1 = 0, and therefore
X = 0. In case (ii), we get 0 ≤ (x1 − x3)

2 = −(4 − γ2)x1x3 ≤ 0, which leads
to [x1 = x3] and [x1 = 0 or x3 = 0] since γ2 ̸= 4. We get X = 0 in each case.
Therefore, SA has the P′

2-property. �

Hence, for any real invertible matrix P , L(X) := PTSA(PXPT )P has only
the trivial solution for any given Q ≽ 0 which would make X ≽ 0, L(X)+Q ≽ 0,
and tr(X(L(X)+Q)) = 0, when γ2 < 4. From the above proof, it is more or less
clear that SA is not P′

2 if γ2 > 4. When γ2 = 4, the following example shows
that SA is not P′

2 as well.
Example Let

X =

[
1 −1

−1 1

]
and A =

[
0 0
2 0

]
.
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Then XSA(X)X = 0 ≼ 0, yet X ̸= 0. Hence SA is not P′
2.

4. Conclusion and Acknowledgements

In this paper, we took a baby step to characterize the GUS-property of
the Stein transformation which hasn’t been succeeded for the last decade. We
hope the presentation of this paper would bring interests of many other talented
mathematicians to work on this newly generated problem. We are indebted to
Professor Muddappa S. Gowda of University of Maryland Baltimore County
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