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Abstract. In this paper, we investigate bounds for solutions of nonlinear
perturbed differential systems.
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1. Introduction

The behavior of solutions of a perturbed system is determined in terms of
the behavior of solutions of an unperturbed system. There are three useful
methods for showing the qualitative behavior of the solutions of perturbed non-
linear system : Lyapunov’s second method, the use of integral inequalities , and
the method of variation of constants formula. The method incorporating in-
tegral inequalities takes an important place among the methods developed for
the qualitative analysis of solutions to linear and nonlinear system of differential
equations. In the presence the method of integral inequalities is as efficient as
the direct Lyapunov’s method.

The notion of h-stability (hS) was introduced by Pinto [15,16] with the in-
tention of obtaining results about stability for a weakly stable system (at least,
weaker than those given exponential asymptotic stability) under some pertur-
bations. That is, Pinto extended the study of exponential asymptotic stability
to a variety of reasonable systems called h-systems. Using this notion, Choi
and Ryu [3,5] investigated bounds of solutions for nonlinear perturbed systems
and nonlinear functional differential systems. Also, Goo et al. [8] studied the
boundedness of solutions for nonlinear perturbed systems.

In this paper, we obtain some results on boundedness of solutions of nonlinear
perturbed differential systems under suitable conditions on perturbed term. To
do this we need some integral inequalities.
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2. Preliminaries

We are interested in the relations of the unperturbed system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

and the solutions of the perturbed system

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0, (2)

where x,y,f and g are elements of Rn, an n-dimensional real Euclidean space.
We assume that f, g ∈ C(R+ × Rn,Rn), R+ = [0,∞), and that f is continu-

ously differentiable with respect to the components of x on R+×Rn, f(t, 0) = 0
for all t ∈ R+. The symbol | · | will be used to denote arbitrary vector norm in
Rn.

Let x(t, t0, x0) denote the unique solutions of (1) and (2), satisfying the initial
conditions x(t0, t0, x0) = x0, and y(t0, t0, y0) = y0, existing on [t0,∞), respec-
tively. Then we can consider the associated variational systems around the zero
solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (4)

Here, fx(t, x) is the matrix whose element in the ith row, jth column is the
partial derivative of the ith component of f with respect to the jth component
of x. The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (3).
We recall some notions of h-stability [15].

Definition 2.1. The system (1)(the zero solution x = 0 of (1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on
R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough(here h(t)−1 = 1
h(t) ).

Definition 2.2. The system (1) (the zero solution x = 0 of (1)) is called h-
stable(hS) if there exists δ > 0 such that (1) is an h-system for |x0| ≤ δ and h is
bounded.

Let M denote the set of all n × n continuous matrices A(t) defined on R+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [6].
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Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0

|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t) (5)

for some S(t) ∈ N .

We give some related properties that we need in the sequel.

Lemma 2.1 ([16]). The linear system

x′ = A(t)x, x(t0) = x0, (6)

where A(t) is an n×n continuous matrix, is an h-system( h-stable, respectively)
if and only if there exist c ≥ 1 and a positive continuous( bounded, repectively)
function h defined on R+ such that

|ϕ(t, t0)| ≤ c h(t)h(t0)
−1 (7)

for t ≥ t0 ≥ 0, where ϕ(t, t0) is a fundamental matrix of (6).

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.2. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1)
and (2), respectively. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))

∫ s

t0

g(τ, y(τ))dτ ds.

Theorem 2.3 ([3]). If the zero solution of (1) is hS, then the zero solution of
(3) is hS.

Theorem 2.4 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (3) is
hS, then the solution z = 0 of (4) is hS.

Lemma 2.5 ([13]). Let u, f, g ∈ C(R+), for which the inequality

u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

f(s)
{∫ s

0

g(τ)u(τ))dτ
}
ds, t ∈ R+,

holds, where u0 is a nonnegative constant. Then,

u(t) ≤ u0

(
1 +

∫ t

0

f(s) exp(

∫ s

0

(f(τ) + g(τ))dτ)

)
ds, t ∈ R+,
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Lemma 2.6 ([5]). Let u, λ1, λ2, w ∈ C(R+), w(u) be nondecreasing in u and
1
vw(u) ≤ w(uv ) for some v > 0. If ,for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ1(s)
{∫ s

t0

λ2(τ)w(u(τ))dτ
}
ds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp(

∫ t

t0

λ1(s)ds), t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds
w(s) , W

−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ2(s)ds ∈ domW−1
}
.

Lemma 2.7 ([11]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u ,u ≤ w(u) . Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)(

∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1, (8)

where W (u) =
∫ u

u0

ds
w(s) ,u > 0, u0 > 0, W−1(u) is the inverse of W (u) and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}
.

3. Main results

In this section, we investigate bounds for the nonlinear differential systems.
Also, we examine the bounded property for the perturbed system of (1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0, (9)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0.

The generalization of a function h’s condition and the strong condition of a
function g in Theorem 3.1 [10] are the following result.

Theorem 3.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (1) is hS with
a positive continuous function h, and g in (9) satisfies∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)
(
|y(s)|+ h(s)

∫ s

t0

k(τ)|y(τ)|dτ
)
, t ≥ t0 ≥ 0,
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where a, k ∈ C(R+),
∫∞
t0

a(s)ds < ∞, and
∫ s

t0
k(s)ds < ∞. Then, the solution

y = 0 of (9) is hS.

Proof. Using the nonlinear variation of Alekseev[1], any solution y(t) = y(t, t0, y0)
of (9) passing through (t0, y0) is given by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))

∫ s

t0

g(τ, y(τ)) dτds. (10)

By Theorem 2.3, since the solution x = 0 of (1) is hS, the solution v = 0 of (3)
is hS. Therefore, by Theorem 2.4, the solution z = 0 of (4) is hS. By Lemma 2.1
and (10) , we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)h(s)
−1a(s)

(
|y(s)|+ h(s)

∫ s

t0

k(τ)|y(τ)|dτ
)
ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t) a(s)h(s)
−1|y(s)|ds

+

∫ t

t0

c2h(t)a(s)

∫ s

t0

k(τ)h(τ)h(τ)−1|y(τ)|dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.5, we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)−1
(
1 + c2

∫ t

t0

a(s) exp(

∫ s

t0

(c2a(τ) + k(τ)h(τ))dτ)ds
)

≤ c|y0|h(t)h(t0)−1, c = c1
(
1 + c2

∫ t

t0

a(s) exp(

∫ s

t0

(c2a(τ) + k(τ)h(τ))dτ)ds
)
.

It follows that y = 0 of (9) is hS. Hence, the proof is complete. �

Remark 3.1. In the linear case, we can obtain that if the zero solution x = 0
of (6) is hS, then the perturbed system

y′ = A(t)y +

∫ t

t0

g(s, y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.1 except the condition of
t∞-similarity.

Remark 3.2. Letting k(t) = 0 in Theorem 3.1, we obtain the same result as
that of Theorem 3.3 in [9].

The weak condition of a function h and the strong condition of a function g
in Theorem 3.3 [8] are the following result.

Theorem 3.2. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u ,u ≤ w(u)
and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to
fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the
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solution x = 0 of (1) is hS with a positive continuous function h, and g in (9)
satisfies ∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)
(
|y(s)|+ h(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ
)
,

where
∫∞
t0

a(s)ds < ∞ ,
∫∞
t0

b(s)ds < ∞ , and
∫∞
t0

k(s)ds < ∞ . Then, any

solution y(t) = y(t, t0, y0) of (9) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)h(s)ds
]
exp(

∫ t

t0

c2a(s)ds), t0 ≤ t < b1

where c = c1|y0|h(t0)−1 and W , W−1 are the same functions as in Lemma 2.6
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

k(s)h(s)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (9),
respectively. By Theorem 2.3, since the solution x = 0 of (1) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 2.4, the solution z = 0 of (4) is hS.
Using Lemma 2.1 and (10), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)a(s)
|y(s)|
h(s)

ds

+

∫ t

t0

c2h(t)a(s)

∫ s

t0

k(τ)h(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 2.6 yields

|y(t)| ≤ h(t)W−1
[
W (c) +

∫ t

t0

k(s)h(s)ds
]
exp(

∫ t

t0

c2a(s)ds), t0 ≤ t < b1,

where c = c1|y0|h(t0)−1. The above estimation yields the desired result since
the function h is bounded, and the theorem is proved. �

The generalization of a function h’s condition and a slight modification of a
function g’s condition in Theorem 3.4[11] are the following result.

Theorem 3.3. Let a, b, k, u, w ∈ C(R+), w(u) be nondecreasing in u ,u ≤ w(u)
and 1

vw(u) ≤ w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to
fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the
solution x = 0 of (1) is hS with the positive continuous function h, and g in (9)
satisfies ∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)
(
w(|y(s)|) + h(s)

∫ s

t0

k(τ)|y(τ)|dτ
)
,
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where
∫∞
t0

a(s)ds < ∞ ,
∫∞
t0

b(s)ds < ∞ , and
∫∞
t0

k(s)ds < ∞ . Then, any

solution y(t) = y(t, t0, y0) of (9) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

a(s)(1 +

∫ s

t0

k(τ)h(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 2.6 and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

a(s)(1 +

∫ s

t0

k(τ)h(τ)dτ)ds ∈ domW−1
}
.

Proof. It is known that the solution of (9) is represented by the integral equa-
tion(10). By Theorem 2.3, since the solution x = 0 of (1) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 2.4, the solution z = 0 of (4) is hS.
Using Lemma 2.1 and (10), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+

∫ t

t0

c2h(t)a(s)

∫ s

t0

k(τ)h(τ)
|y(τ)|
h(τ)

dτds.

Set u(t) = |y(t)|h(t)−1. Now an application of Lemma 2.7 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

a(s)(1 +

∫ s

t0

k(τ)h(τ)dτ)ds
]
,

where c = c1|y0|h(t0)−1. The above estimation implies the boundedness of y(t),
and the proof is complete. �

Remark 3.3. Letting k(t) = 0 in Theorem 3.5 and adding the increasing con-
dition of the function h, we obtain the same result as that of Theorem 3.2 in
[8].
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