THE NORMALIZED LAPLACIAN ESTRADA INDEX OF GRAPHS ${ }^{\dagger}$

MARDJAN HAKIMI-NEZHAAD, HONGBO HUA, ALI REZA ASHRAFI* AND
SHUHUA QIAN

Abstract

Suppose G is a simple graph. The ℓ-eigenvalues $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ of G are the eigenvalues of its normalized Laplacian ℓ. The normalized Laplacian Estrada index of the graph G is defined as $\ell E E=\ell E E(G)=$ $\sum_{i=1}^{n} e^{\delta_{i}}$. In this paper the basic properties of $\ell E E$ are investigated. Moreover, some lower and upper bounds for the normalized Laplacian Estrada index in terms of the number of vertices, edges and the Randic index are obtained. In addition, some relations between $\ell E E$ and graph energy $E_{\ell}(G)$ are presented.

AMS Mathematics Subject Classification : $05 C 50,05 C 90,15 A 18,15 A 42$. Key words and phrases : Normalized Laplacian energy, Normalized Laplacian Estrada index, Estrada index, Randić index.

1. Introduction

Let $G=(V, E)$ be a simple graph with n vertices and m edges. The eigenvalues of the adjacency matrix $A(G)$ are called the eigenvalues of G and form the spectrum of G. Suppose $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ is the spectrum of G such that $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. If G has exactly s distinct eigenvalues $\delta_{1}, \ldots, \delta_{s}$ and the multiplicity of δ_{i} is $t_{i}, 1 \leq i \leq s$, then we use the following compact form

$$
\operatorname{Spec}(G)=\left(\begin{array}{llll}
\delta_{1} & \delta_{2} & \ldots & \delta_{s} \\
t_{1} & t_{2} & & t_{s}
\end{array}\right)
$$

for the spectrum of G.
The Estrada index of the graph G is defined as $E E=E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}$. This graph invariant was introduced by Ernesto Estrada, which has noteworthy

[^0]chemical applications, see $[12,13,14]$ for details. We encourage the interested readers to consult $[2,11,16]$ for the mathematical properties of Estrada index.

The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$, where $A(G)$ and $D(G)$ are the adjacency and diagonal matrices of G, respectively. If $0=$ $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$ are the Laplacian eigenvalues of G, then the Laplacian Estrada index, L-Estrada index for short, of G is defined as the sum of the terms $e^{\mu_{i}}, 1 \leq i \leq n$. This quantity is denoted by $\operatorname{LEE}(G)$. There exists a vast literature that studies the L-Estrada index of graphs. We refer the readers to $[15,19,24]$ for more information.

The normalized Laplacian matrix $\ell(G)=\left[\ell_{i, j}\right]_{n \times n}$ is defined as:

$$
\ell_{i, j}= \begin{cases}1 & \text { if } i=j \text { and } \operatorname{deg}\left(v_{i}\right) \neq 0 \\ -\frac{1}{\sqrt{\operatorname{deg}\left(v_{i}\right) \operatorname{deg}\left(v_{j}\right)}} & \text { if } i \neq j \text { and } v_{i} \text { is adjacent to } v_{j} . \\ 0 & \text { otherwise }\end{cases}
$$

The normalized Laplacian eigenvalues or ℓ-spectrum of G are denoted by $0=\delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{n}$. The multiplicity of $\delta_{1}=0$ is equal to the number of connected components of G. Define $\varphi(G, \delta)=\operatorname{det}\left(\delta I_{n}-\ell(G)\right)$, where I_{n} is the unit matrix of order n. This polynomial is called the normalized Laplacian characteristic polynomial. The basic properties of the normalized Laplacian eigenvalues can be found in $[8,9]$. The normalized Laplacian eigenvalues of an n-vertex connected graph G satisfying the following elementary conditions: $\sum_{i=1}^{n} \delta_{i}=n$ and $\sum_{i=1}^{n} \delta_{i}^{2}=n+2 R_{-1}(G)$, where $R_{-1}(G)$ is Randic index of G, see $[6,8,9]$ for details.

We now define the normalized Laplacian Estrada index, simply called ℓ-Estrada index, of G by the following equation:

$$
\ell E E=\ell E E(G)=\sum_{i=1}^{n} e^{\delta_{i}}
$$

From the power-series expansion of e^{x}, we have:

$$
\ell E E=\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{i=1}^{n} \delta_{i}^{k}
$$

where we assumed that $0^{0}=1$.
We now introduce some notation that will be used throughout this paper. The complete graph on n vertices is denoted by K_{n}. The line graph $l(G)$ of a graph G is another graph $l(G)$ that represents the adjacencies between edges of G. In a graph theoretical language $V(l(G))=E(G)$ and two edges of G are adjacent in $l(G)$ if they have a common vertex. Suppose \bar{G} denotes the complement of G. For two graphs G and $H, G \cup H$ is the disjoint union of G and H. The join $G+H$ is the graph obtained from $G \cup H$ by connecting all vertices from $V(G)$ with all vertices from $V(H)$. If $G_{1}, G_{2}, \ldots, G_{k}$ are graphs with mutually disjoint vertex sets, then we denote $G_{1}+G_{2}+\cdots+G_{k}$ by $\sum_{j=1}^{k} G_{j}$. In the case that $G_{1}=G_{2}=\ldots=G_{k}=G$, we denote $\sum_{j=1}^{k} G_{j}$ by $G^{(k)}$.

The following results are crucial throughout this paper.
Lemma 1.1 (See [9] for details). Let G be a graph of order $n \geq 2$ that contains no isolated vertices. We have
i) If G is connected with m edges and diameter D, then $\delta_{2}(G) \geq \frac{1}{2 m D}>0$.
ii) $\delta_{n}(G) \geq \frac{n}{n-1}$ with equality if and only if G is the complete graph on n vertices.

Lemma 1.2 ([21] Theorems 2.2 and 2.3). Let G be a graph of order n with no isolated vertices. Suppose G has minimum vertex degree equal to $d_{\text {min }}$ and maximum vertex degree equal to $d_{\max }$. Then $\frac{n}{2 d_{\max }} \leq R_{-1}(G) \leq \frac{n}{2 d_{\min }}$. Equality occurs in both bounds if and only if G is a regular graph.

Lemma 1.3. Let G be an n-vertex graph. Then $\delta_{2}=\cdots=\delta_{n}$ if and only if $G \cong \bar{K}_{n}$ or $G \cong K_{n}$.

Proof. We know that $\delta_{1}=0$. Suppose that $\delta_{2}=\cdots=\delta_{n}$. If G is connected on $n \geq 3$ vertices, then by [7, Corollary 2.6.4] G has exactly two distinct ℓ-eigenvalues if and only if G is the complete graph. If G is not connected, then $\delta_{2}=0$ and if $\delta_{i}=0$ and $\delta_{i+1} \neq 0$ then by [9, Lemma 1.7 (iv)], G has exactly i connected components. So, all Laplacian eigenvalues are equal to zero, which obviously implies that $G \cong \bar{K}_{n}$.

2. Examples

In this section, the normalized Laplacian Estrada index of some well-known graphs are computed.

Example 2.1. In this example the normalized Laplacian Estrada index of complete and cocktail-party graphs are computed. We begin with the complete graph. The normalized Laplacian spectrum of K_{n} and cocktail-party graph $C P_{\frac{n}{2}}$ are computed as follows:

$$
\ell \operatorname{Spec}\left(K_{n}\right)=\left(\begin{array}{cc}
0 & \frac{n}{n-1} \\
1 & n-1
\end{array}\right) \text { and } \ell \operatorname{Spec}\left(C P_{\frac{n}{2}}\right)=\left(\begin{array}{ccc}
0 & 1 & \frac{n}{n-2} \\
1 & \frac{n}{2} & \frac{n}{2}-1
\end{array}\right) .
$$

So, $\ell E E\left(K_{n}\right)=1+(n-1) e^{\frac{n}{n-1}}$ and $\ell E E\left(C P_{\frac{n}{2}}\right)=1+\frac{n}{2} e+\left(\frac{n}{2}-1\right) e^{\frac{n}{n-2}}$.
Example 2.2. The normalized Laplacian spectrum of the cycle C_{n} consists of $1-\cos \frac{2 \pi i}{n}$, where $0 \leq i \leq n-1$. So,

$$
\begin{gathered}
\ell E E\left(C_{n}\right)=\sum_{i=0}^{n-1} e^{1-\cos \frac{2 \pi i}{n}}=n e\left(\frac{1}{n} \sum_{i=0}^{n-1} e^{-\cos \frac{2 \pi i}{n}}\right) \approx \frac{n e}{2 \pi} \int_{0}^{2 \pi} e^{-\cos x} d x . \\
\text { Suppose } Z_{0}=\int_{0}^{2 \pi} e^{-\cos x} d x \approx 7.954926524 . \text { Then } \ell E E\left(C_{n}\right) \approx \frac{n e}{2 \pi} Z_{0} .
\end{gathered}
$$

Example 2.3. The normalized Laplacian spectrum of n-vertex path P_{n} consists of $1-\cos \frac{\pi i}{n-1}$, where $0 \leq i \leq n-1$. Thus,

$$
\begin{aligned}
\ell E E\left(P_{n}\right) & =\sum_{i=0}^{n-1} e^{1-\cos \frac{\pi i}{n-1}} \\
& =\frac{e}{2} e \sum_{i=1}^{n-1} e^{1-\cos \frac{\pi i}{n-1}}+\frac{e}{2} \sum_{i=0}^{n-2} e^{1-\cos \frac{\pi i}{n-1}}+\frac{e}{2}\left(e^{-1}+e\right) \\
& =\frac{1+e^{2}}{2}+\frac{(n-1) e}{2}\left(\frac{1}{n-1} \sum_{i=1}^{n-1} e^{-\cos \frac{\pi i}{n-1}}+\frac{1}{n-1} \sum_{i=0}^{n-2} e^{-\cos \frac{\pi i}{n-1}}\right) \\
& \approx \frac{1+e^{2}}{2}+\frac{(n-1) e}{2}\left(\frac{1}{\pi} \int_{0}^{\pi} e^{-\cos x} d x+\frac{1}{\pi} \int_{0}^{\pi} e^{-\cos x} d x\right) \\
& =\frac{1+e^{2}}{2}+\frac{(n-1) e}{\pi}\left(\int_{0}^{\pi} e^{-\cos x} d x\right) .
\end{aligned}
$$

Therefore, $\ell E E\left(P_{n}\right) \approx 0.753004179+3.441523869 n$, for large n.
Consider the Petersen graph P on 10 vertices. Then the normalized Laplacian spectrum of P is $\ell \operatorname{Spec}(P)=\left(\begin{array}{ccc}0 & \frac{2}{3} & \frac{5}{3} \\ 1 & 5 & 4\end{array}\right)$. Hence, $\ell E E(P)=1+5 e^{\frac{2}{3}}+4 e^{\frac{5}{3}}$.
Example 2.4. Take the star graph and add a new edge to each of its n vertices to get a star-like graph $T_{2 t+1}$ with $n=2 t+1$ vertices. By [8], the ℓ-eigenvalues of a star-like graph are as follows:

$$
\ell \operatorname{Spec}\left(T_{2 t+1}\right)=\left(\begin{array}{ccccc}
0 & 1 & 1-\frac{\sqrt{2}}{2} & 1+\frac{\sqrt{2}}{2} & 2 \\
1 & 1 & t-1 & t-1 & 1
\end{array}\right)
$$

Figure 1. The Star-Like Graph $T_{2 t+1}$.
Therefore, $\ell E E(G)=1+e+e^{2}+e(n-3) \cosh \frac{1}{\sqrt{2}}$.
Example 2.5. Suppose G is a m-petal graph on $n=2 m+1$ vertices, $V(G)=$ $\left\{v_{0}, v_{1}, \ldots, v_{2 m}\right\}$ and $E(G)=\left\{v_{0} v_{i}, v_{2 i-1} v_{2 i}\right\}$, for $i>1$.
By [9], G has ℓ-eigenvalues $0, \frac{1}{2}$ with multiplicity $m-1$, and $\frac{3}{2}$ with multiplicity $m+1$. Hence, $\ell E E(G)=1+(m-1) e^{\frac{1}{2}}+(m+1) e^{\frac{3}{2}}$. We now generalize this graph as follows: Fix $s, m \geq 2$ and let $H=\{u\}+\left(s K_{m}\right)$, see Figure 2 for an illustration.

By [8], The ℓ-eigenvalues of H are $0, \frac{1}{m}$ with multiplicity $s-1$ and $\frac{m+1}{m}$ with multiplicity $s(m-1)+1$. Then, $\ell E E(H)=1+(s-1) e^{\frac{1}{m}}+(s(m-1)+1) e^{\frac{m+1}{m}}$.

Figure 2. The Generalized Petal Graph.

Example 2.6. Let G be the graph constructed as follows. Fix $m \geq 1$. Take the vertex set to be $\left\{u_{1}, u_{2}, u_{3}\right\} \cup V_{1} \cup V_{2} \cup V_{3}$, where each V_{i} is a set of m vertices. Then G has exactly $3(m+1)$ vertices. Define the edge set of G by

$$
\begin{aligned}
E(G) & =\left\{u_{1} x: x \in V_{1} \cup V_{2}\right\} \cup\left\{u_{2} x: x \in V_{1} \cup V_{3}\right\} \cup\left\{u_{3} x: x \in V_{2} \cup V_{3}\right\} \\
& \cup\left\{u_{1} u_{2}, u_{2} u_{3}, u_{1} u_{3}\right\} \cup \bigcup_{i=1}^{3}\left\{x y: x, y \in v_{i}, x \neq y\right\}
\end{aligned}
$$

see Figure 3. By [7], the ℓ-eigenvalues of G are $0, \frac{3}{2(m+1)}$ with multiplicity 2 and $\frac{m+2}{m+1}$ with multiplicity $3 m$. Hence, $\ell E E(G)=1+2 e^{\frac{3}{2(m+1)}}+3 m e^{\frac{m+2}{m+1}}$.

Figure 3. The Generalized Triangle-Petal Graph.

Example 2.7. The hypercube graph Q_{n} is a regular graph with 2^{n} vertices, which correspond to the subsets of an n-element set. Two vertices A and B are joined by an edge if and only if A can be obtained from B by adding or removing a single element. The ℓ-eigenvalues of the hypercube Q_{n} are $\frac{2 i}{n}$ with multiplicity $\binom{n}{i}$, for $0 \leq i \leq n$. So, $\ell E E\left(Q_{n}\right)=\sum_{i=0}^{n}\binom{n}{i} e^{\frac{2 i}{n}}=\left(e^{\frac{2}{n}}+1\right)^{n}$.

Example 2.8. The wheel graph on $n+1$ vertices is defined by $W_{n}=C_{n}+K_{1}$. Thus, the normalized Laplacian spectrum is

$$
\operatorname{Spec}\left(W_{n}\right)=\left\{0, \frac{4}{3}, 1-\frac{2}{3} \cos \frac{2 \pi}{n}, 1-\frac{2}{3} \cos \frac{4 \pi}{n}, \ldots, 1-\frac{2}{3} \cos \frac{2(n-1) \pi}{n}\right\}
$$

Thus,

$$
\begin{aligned}
\ell E E\left(W_{n}\right) & =1+e^{\frac{4}{3}}+\sum_{i=1}^{n-1} e^{1-\frac{2}{3} \cos \frac{2 \pi i}{n}} \\
& =1+e^{\frac{4}{3}}+\frac{e}{2}\left(\sum_{i=1}^{n} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}}+\sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}}-2 e^{-\frac{2}{3}}\right) \\
& =1+e^{\frac{4}{3}}-e^{\frac{1}{3}}+\frac{n e}{2}\left(\frac{1}{n} \sum_{i=1}^{n} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}}+\frac{1}{n} \sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}}\right) \\
& \approx 1+e^{\frac{4}{3}}-e^{\frac{1}{3}}+\frac{n e}{2}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x+\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x\right) \\
& =1+e^{\frac{4}{3}}-e^{\frac{1}{3}}+\frac{n e}{2 \pi}\left(\int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x\right) .
\end{aligned}
$$

Define $N_{0}=\int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x \approx 7.000950642$. Since, $e^{\frac{4}{3}} \approx 3.79367, e^{\frac{1}{3}} \approx 1.39561$, $\ell E E\left(W_{n}\right) \approx 3.398055468+\frac{n e}{2 \pi} N_{0}=3.398055468+3.028807202 n$, for large n.
Example 2.9. A Möbius ladder L_{n} of order $2 n$ is a graph obtained by introducing a twist in a 3 -regular prism graph of order n that is isomorphic to the circulant graph, see Figure 4.

Figure 4. The Möbuis Ladder Graph.

In this example the normalized Laplacian Estrada index of a Möbius graph is computed. By [10], the normalized Laplacian eigenvalues of L_{n} are $\delta_{i}=$ $1-\frac{(-1)^{i}}{3}-\frac{2}{3} \cos \frac{\pi i}{n}$, where $0 \leq i \leq 2 n-1$. So,

$$
\ell E E\left(L_{n}\right)=e^{\frac{2}{3}} \sum_{\substack{i=0 \\ i \text { even }}}^{2 n-2} e^{-\frac{2}{3} \cos \frac{\pi i}{n}}+e^{\frac{4}{3}} \sum_{\substack{i=0 \\ i \text { odd }}}^{2 n-1} e^{-\frac{2}{3} \cos \frac{\pi i}{n}}
$$

$$
\begin{aligned}
& =e^{\frac{2}{3}} \sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}}+e^{\frac{4}{3}} \sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{(2 i+1) \pi}{n}} \\
& \approx \frac{n e^{\frac{2}{3}}}{2 \pi} \int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x+\frac{n e^{\frac{4}{3}}}{2 \pi} \int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x \\
& =\frac{n}{2 \pi}\left(e^{\frac{2}{3}}+e^{\frac{4}{3}}\right) N_{0} .
\end{aligned}
$$

Note that,

$$
\sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{(2 i+1) \pi}{n}}=\sum_{i=0}^{2 n-1} e^{-\frac{2}{3} \cos \frac{\pi i}{n}}-\sum_{i=0}^{n-1} e^{-\frac{2}{3} \cos \frac{2 \pi i}{n}} \approx \frac{n}{2 \pi} \int_{0}^{2 \pi} e^{-\frac{2}{3} \cos x} d x
$$

Since, $e^{\frac{4}{3}} \approx 3.79367, e^{\frac{2}{3}} \approx 1.94773$. Then $\ell E E\left(L_{n}\right) \approx 6.397276157 n$, for large n.

3. The ℓ-Estrada Index of Graphs

This section is concerned with the use of algebraic techniques in the study of the normalized Estrada index of graphs. We begin with the following simple theorem:

Theorem 3.1. Let G be a connected graph with n vertices. Then $\ell E E(G)>$ ne.

Proof. By Arithmetic-Geometric mean inequality [18], we have:

$$
\frac{1}{n} \ell E E(G) \geq \sqrt[n]{\prod_{i} e^{\delta_{i}}}=\sqrt[n]{\sum_{i}^{\sum_{i}}}=\sqrt[n]{e^{n}}=e
$$

with equality if and only if for all $1 \leq i, j \leq n, e^{\delta_{i}}=e^{\delta_{j}}$ if and only if $\delta_{i}=$ δ_{j}. This implies that all δ_{i} 's are zero. This contradicts the fact that G is connected.

Theorem 3.2. Let G be a graph with n vertices and c connected components. Then, $\ell E E(G) \geq c+(n-c) e^{\frac{n}{n-c}}$. Equality holds if and only if G is a union of copies of $c K_{s}$, for some fixed integers s.

Proof. Using a similar method as in [3, Theorem 3], we obtain $\delta_{1}=\cdots=\delta_{c}=0$ and $\delta_{c+1}+\cdots+\delta_{n}=n$. Therefore,

$$
\ell E E(G)=c+\sum_{i=c+1}^{n} e^{\delta_{i}} \geq c+(n-c) e^{\frac{\delta_{c+1}+\cdots+\delta_{n}}{n-c}}
$$

where the last inequality is obtained by applying the Arithmetic-Geometric mean inequality. Suppose $G=c K_{s}, s \geq 2$. Then, $n=c s$, and the normalized

Laplacian spectrum of G is as follows: $\left(\begin{array}{cc}0 & \frac{s}{s-1} \\ c & c(s-1)\end{array}\right)$. Further,

$$
\ell E E(G)=c+\sum_{i=c+1}^{n} e^{\frac{s}{s-1}}=c+(n-c) e^{\frac{n}{n-c}} .
$$

This shows that the equality holds for G. Conversely, let equality hold for G. Then all of non-zero normalized Laplacian eigenvalues of G must be mutually equal. Then, the normalized Laplacian spectrum of the graph H is $0, \delta$ with multiplicity $s-1$, where $\delta>0$ and s is a positive integer. Therefore, $H=K_{s}$, and then $G=c K_{s}$, as desired.

Theorem 3.3. If G is a connected r-regular graph with n vertices, then $\ell E E(G)$ $\geq 1+(n-1) e^{\frac{n}{n-1}}$, with equality if and only if $G \cong K_{n}$.
Proof. The ℓ-spectrum of G is $0,1-\frac{\lambda_{i}}{r}$, for $2 \leq i \leq n$. Then $\ell E E(G)=$ $1+e \sum_{i=2}^{n} e^{\frac{-\lambda_{i}}{r}}$. By arithmetic-geometric mean inequality, we get

$$
\begin{aligned}
(\ell E E(G)-1) e^{-1}=\sum_{i=2}^{n} e^{\frac{-\lambda_{i}}{r}} & \geq(n-1)\left(\prod_{i=2}^{n} e^{\frac{-\lambda_{i}}{r}}\right)^{\frac{1}{n-1}} \\
& =(n-1) e^{\frac{-1}{r(n-1)} \sum_{i=2}^{n} \lambda_{i}} \\
& =(n-1) e^{\frac{1}{n-1}},
\end{aligned}
$$

where the last equality follows from $\sum_{i=2}^{n} \lambda_{i}=-r$. Therefore, $\ell E E(G) \geq 1+$ $(n-1) e^{\frac{n}{n-1}}$ with equality if and only if $\lambda_{2}=\cdots=\lambda_{n}$. By assumption, this is equivalent to $G \cong K_{n}$.

Theorem 3.4. If G is an r-regular bipartite graph, then $\ell E E(G)<e E E(G)^{\frac{1}{r}}$.
Proof. The ℓ-eigenvalues of G are $0,1-\frac{\lambda_{i}}{r}$ for $2 \leq i \leq n$. Thus,

$$
\ell E E(G)=\sum_{i=1}^{n}\left(e^{r-\lambda_{i}}\right)^{\frac{1}{r}}=e \sum_{i=1}^{n}\left(e^{-\lambda_{i}}\right)^{\frac{1}{r}} \leq e\left(\sum_{i=1}^{n} e^{-\lambda_{i}}\right)^{\frac{1}{r}}=e E E(G)^{\frac{1}{r}}
$$

where the last equality follows from $\sum_{i=1}^{n} e^{\lambda_{i}}=\sum_{i=1}^{n} e^{-\lambda_{i}}$. Since G is bipartite, the eigenvalues of G are symmetric around zero. The equality is attained if and only if $\lambda_{1}=\cdots=\lambda_{n}$ and this is equivalent to $G \cong \bar{K}_{n}$, which is impossible.

Theorem 3.5. Let G be a connected with $n \geq 2$ vertices, m edges and diameter D. Then $\ell E E(G) \geq 1+e^{\frac{1}{2 m D}}+e^{\frac{2 n}{(n-1)}-\frac{1}{2 m D}}+(n-3) e^{\frac{n}{n-1}}$.

Proof. Since G is connected, $\delta_{1}=0$ and $\delta_{2}, \delta_{n}>0$. Then,

$$
\ell E E(G)=e^{\delta_{1}}+e^{\delta_{2}}+\cdots+e^{\delta_{n}}
$$

$$
\begin{aligned}
& \geq 1+e^{\delta_{2}}+e^{\delta_{n}}+(n-3)\left(\prod_{i=3}^{n-1} e^{\delta_{i}}\right)^{\frac{1}{n-3}} \\
& =1+e^{\delta_{2}}+e^{\delta_{n}}+(n-3) e^{\frac{n-\delta_{2}-\delta_{n}}{n-3}} .
\end{aligned}
$$

Define $f(x, y)=1+e^{x}+e^{y}+(n-3) e^{\frac{n-x-y}{n-3}}, x, y>0$. Then we have:

$$
\begin{aligned}
f_{x} & =e^{x}-e^{\frac{n-x-y}{n-3}}, \\
f_{y} & =e^{y}-e^{\frac{n-x-y}{n-3}}, \\
f_{x x} & =e^{x}+\frac{1}{n-3} e^{\frac{n-x-y}{n-3}}, \\
f_{y y} & =e^{y}+\frac{1}{n-3} e^{\frac{n-x-y}{n-3}}, \\
f_{x y} & =f_{y x}=\frac{1}{n-3} e^{\frac{n-x-y}{n-3}} .
\end{aligned}
$$

Moreover, if $f_{x}=f_{y}=0$ then $(n-2) x+y=n$ and so $x+y=\frac{2 n}{n-1}$. If $x+y=\frac{2 n}{n-1}$, then $f_{x x}>0$ and

$$
f_{x x} f_{y y}-f_{x y}^{2}=e^{\frac{2 n}{n-1}}+\frac{1}{n-3} e^{\frac{n}{n-1}}\left[e^{x}+e^{\frac{2 n}{n-1}}\right]>0
$$

From the above, we conclude that $f(x, y)$ has a minimum at $x+y=\frac{2 n}{n-1}$ and that the minimum value is $1+e^{x}+e^{\frac{2 n}{n-1}-x}+(n-3) e^{\frac{n}{n-1}}$. Hence f is an increasing function for $x>0$. By Lemma 1.1(i), $\delta_{2}(G) \geq \frac{1}{2 m D}>0$. Thus,

$$
\ell E E(G) \geq 1+e^{\frac{1}{2 m D}}+e^{\frac{2 n}{(n-1)}-\frac{1}{2 m D}}+(n-3) e^{\frac{n}{n-1}}
$$

proving the result.
Theorem 3.6. If G is an r-regular graph with n vertices, then

$$
\ell E E(l(G)) \leq L E E(G)^{\frac{1}{2(r-1)}}+\frac{n(r-2)}{2} e^{\frac{r}{r-1}}
$$

with equality if and only if $G \cong \bar{K}_{n}$. In particular, for r-regular graphs, $\ell E E(l(G)) \leq \sqrt{L E E(G)}$ if and only if $r=2$.
Proof. By [4, Theorem 3.8], the eigenvalues of $l(G)$ are -2 with multiplicity $\frac{n(r-2)}{2}$, and $\lambda_{i}(G)+r-2$ for $1 \leq i \leq n$. Since the line graph of G is $(2 r-$ 2)-regular, and $\mu_{i}(l(G))=2 r-2-\lambda_{i}(l(G))$ for $1 \leq i \leq n$, the normalized Laplacian eigenvalues of $l(G)$ are $\frac{r}{r-1}$ with multiplicity $\frac{n(r-2)}{2}$, and $\frac{\mu_{i}}{2 r-2}$ for $1 \leq$ $i \leq n$. Thus, we have:

$$
\begin{aligned}
\ell E E(l(G)) & =\sum_{i=1}^{n} e^{\frac{\mu_{i}}{2 r-2}}+\frac{n(r-2)}{2} e^{\frac{r}{r-1}} \\
& \leq\left(\sum_{i=1}^{n} e^{\mu_{i}}\right)^{\frac{1}{2 r-2}}+\frac{n(r-2)}{2} e^{\frac{r}{r-1}}
\end{aligned}
$$

$$
=L E E(G)^{\frac{1}{2 r-2}}+\frac{n(r-2)}{2} e^{\frac{r}{r-1}} .
$$

From [24, Lemma 1.2] it follows that the above equality holds if and only if G is an empty graph.
Corollary 3.7. Let $l(G)=l^{1}(G)$ and $l^{k+1}(G)=l_{r_{k}}\left(l^{k}(G)\right)$. If G is r-regular then $\ell E E\left(l^{k+1}(G)\right)=\ell E E\left(l^{k}(G)\right)^{\frac{1}{2 r_{k}-2}}+\frac{n_{k}\left(r_{k}-2\right)}{2} e^{\frac{r_{k}}{r_{k}-1}}$, where $l^{k}(G)$ is r_{k}-regular with n_{k} vertices, $r_{k}=(r-2) 2^{k}+2$ and $n_{k}=\frac{n}{2^{k}} \prod_{i=0}^{k-1}\left(2^{i} r-2^{i-1}+2\right)$.
Corollary 3.8. If G is 2 -regular and bipartite, then $\ell E E(l(G)) \leq \sqrt{E E(G)}$.
A fullerene graph of order n is a cubic 3 -connected planar graph with exactly 12 pentagonal faces and $\frac{n}{2}-10$ hexagonal faces.

Corollary 3.9. If F_{n} is an n-vertex fullerene graph, then

$$
\ell E E\left(l\left(F_{n}\right)\right) \leq L E E\left(F_{n}\right)^{\frac{1}{4}}+2.24 n .
$$

Consider G is r-regular graph with n-vertex and m-edges, and the eigenvalues of G are $r=\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$. A para-line graph of G, denoted by $C(G)$, is defined as a line graph of the subdivision graph $S(G)$ (i.e., $S(G)$ is the graph obtained from G by inserting a vertex to every edge of G.) of G. The para-line graph has also been called the clique-inserted graph. Note that para-line graph is r-regular and the number of vertices of $C(G)$ equals $n r$. The eigenvalues of the para-line graph $C(G)$ of G are $\frac{r+2 \pm \sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}{2}$ for $1 \leq i \leq n$, -2 , with multiplicity $m-n$, and 0 , with multiplicity $m-n$, see $[22,23]$ for details.

Theorem 3.10. Let G be a r-regular graph with n vertices and m edges. Then
$\ell E E(C(G))>1+\frac{n(r-2) e}{2}+\left(\frac{n(r-2)}{2}+1\right) e^{\frac{r+2}{r}}+2(n-1) e^{\frac{r+2}{2 r}}+(n-1)\left(r^{2}+6\right)-4 r$.
Proof. By above discussion, the normalized Laplacian eigenvalues of the paraline graph $C(G)$ of G are

$$
\left(\begin{array}{ccccc}
0 & 1 & \frac{r+2}{r} & \frac{r+2-\sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}{2 r^{2 r}} & \frac{r+2+\sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}{2{ }^{2 r}} \\
1 & \frac{n(r-2)}{2} & \frac{n(r-2)}{2}+1 & 2 \leq n & 2 \leq n
\end{array}\right) .
$$

By definition,

$$
\ell E E(C(G))=1+\frac{n(r-2) e}{2}+\left(\frac{n(r-2)}{2}+1\right) e^{\frac{r+2}{r}}+\sum_{i=2}^{n} e^{\frac{r+2 \pm \sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}{2 r}}
$$

In the other hand,

$$
\sum_{i=2}^{n} e^{\frac{r+2 \pm \sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}{2 r}}=2(n-1) e^{\frac{r+2}{2 r}}+\sum_{i=2}^{n} e^{ \pm \sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}}
$$

$$
\begin{aligned}
& =2(n-1) e^{\frac{r+2}{2 r}}+2 \sum_{i=2}^{n} \cosh \left(\sqrt{r^{2}+4\left(\lambda_{i}(G)+1\right)}\right) \\
& >2(n-1) e^{\frac{r+2}{2 r}}+\sum_{i=2}^{n}\left(r^{2}+4 \lambda_{i}(G)+6\right) \\
& =2(n-1) e^{\frac{r+2}{2 r}}+(n-1)\left(r^{2}+6\right)+4 \sum_{i=2}^{n} \lambda_{i}(G) \\
& =2(n-1) e^{\frac{r+2}{2 r}}+(n-1)\left(r^{2}+6\right)-4 r
\end{aligned}
$$

where the last equality follows from $\sum_{i=2}^{n} \lambda_{i}(G)=-r$. Therefore,
$\ell E E(C(G))>1+\frac{n(r-2) e}{2}+\left(\frac{n(r-2)}{2}+1\right) e^{\frac{r+2}{r}}+2(n-1) e^{\frac{r+2}{2 r}}+(n-1)\left(r^{2}+6\right)-4 r$.

Corollary 3.11. Let $C^{0}(G)=G, C^{k}(G)=C\left(C^{k-1}(G)\right), k \geq 1$. Then
$\ell E E\left(C^{k}(G)\right)>1+\frac{n_{k}^{\prime}(r-2) e}{2}+\left(\frac{n_{k}^{\prime}(r-2)}{2}+1\right) e^{\frac{r+2}{r}}+2\left(n_{k}^{\prime}-1\right) e^{\frac{r+2}{2 r}}+\left(n_{k}^{\prime}-1\right)\left(r^{2}+6\right)-4 r$, where $C^{k}(G)$ is r-regular with $n_{k}^{\prime}=n r^{k}$, vertices for $k \geq 0$.

Theorem 3.12. Let G be an r-regular graph. Then

$$
\ell E E(\bar{G}) \leq 1+e^{\frac{n-r}{n-r-1}} \sqrt[n-r-1]{E E(G)-1} .
$$

Equality holds if and only if G is an empty graph.
Proof. By [10, Theorem 2.6], if the spectrum of G contains $r=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the spectrum of \bar{G} is $n-r-1$ and $-1-\lambda_{i}$, where $2 \leq i \leq n$. Since $\mu_{i}=r-\lambda_{i}$ and complement of G is $(n-r-1)$-regular, the normalized Laplacian eigenvalues of \bar{G} are 0 and $\frac{n-\mu_{i}}{n-r-1}$, where $2 \leq i \leq n$. Thus,

$$
\begin{aligned}
\ell E E(\bar{G}) & =1+\sum_{i=2}^{n}\left(e^{n-\mu_{i}}\right)^{\frac{1}{n-r-1}} \\
& =1+e^{\frac{n}{n-r-1}} \sum_{i=2}^{n}\left(e^{-\mu_{i}}\right)^{\frac{1}{n-r-1}} \\
& \leq 1+e^{\frac{n-r}{n-r-1}}\left(\sum_{i=2}^{n} e^{\lambda_{i}}\right)^{\frac{1}{n-r-1}} \\
& =1+e^{\frac{n-r}{n-r-1}} \sqrt[n-r-1]{E E(G)-1} .
\end{aligned}
$$

Clearly, equality holds if and only if G is an empty graph.

Theorem 3.13. Let G_{1} and G_{2} be r - and s-regular graphs on n and m vertices, respectively. Suppose $0=\delta_{1}\left(G_{1}\right) \leq \delta_{2}\left(G_{1}\right) \leq \cdots \leq \delta_{n}\left(G_{1}\right) \leq 2$ are the ℓ-eigenvalues of G_{1} and $0=\delta_{1}\left(G_{2}\right) \leq \delta_{2}\left(G_{2}\right) \leq \cdots \leq \delta_{n}\left(G_{2}\right) \leq 2$ are the ℓ-eigenvalues of G_{2}. Then

$$
\begin{aligned}
\ell E E\left(G_{1}+G_{2}\right) \leq & 1+e^{\frac{m}{m+r}}\left(\ell E E\left(G_{1}\right)-1\right)^{\frac{r}{m+r}} \\
& +e^{\frac{n}{n+s}}\left(\ell E E\left(G_{2}\right)-1\right)^{\frac{s}{n+s}}+e^{\frac{m}{m+r}+\frac{s}{n+s}}
\end{aligned}
$$

with equality if and only if $G_{1} \cong \bar{K}_{n}$ and $G_{2} \cong \bar{K}_{m}$.
Proof. From [6, Theorem 12], the normalized Laplacian eigenvalues of $G_{1}+G_{2}$ are as follows:

$$
\left(\begin{array}{cccc}
0 & \frac{m+r \delta_{i}\left(G_{1}\right)}{m+r} & \frac{n+s \delta_{j}\left(G_{2}\right)}{n+s} & \frac{m}{m+r}+\frac{n}{n+s} \\
1 & 2 \leq i \leq n & 2 \leq j \leq m & 1
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
\ell E E\left(G_{1}+G_{2}\right) & =1+e^{\frac{m}{m+r}} \sum_{i=2}^{n} e^{\frac{r \delta_{i}\left(G_{1}\right)}{m+r}}+e^{\frac{n}{n+s}} \sum_{i=2}^{m} e^{\frac{s \delta_{j}\left(G_{2}\right)}{n+s}}+e^{\frac{m}{m+r}+\frac{n}{n+s}} \\
& \leq 1+e^{\frac{m}{m+r}}\left(\sum_{i=2}^{n} e^{\delta_{i}\left(G_{1}\right)}\right)^{\frac{r}{m+r}}+e^{\frac{n}{n+s}}\left(\sum_{i=2}^{m} e^{\delta_{j}\left(G_{2}\right)}\right)^{\frac{s}{n+s}}+e^{\frac{m}{m+r}+\frac{n}{n+s}} \\
& =1+e^{\frac{m}{m+r}}\left(\ell E E\left(G_{1}\right)-1\right)^{\frac{r}{m+r}}+e^{\frac{n}{n+s}}\left(\ell E E\left(G_{2}\right)-1\right)^{\frac{s}{n+s}}+e^{\frac{m}{m+r}+\frac{n}{n+s}},
\end{aligned}
$$

where the last equality follows from $\delta_{1}\left(G_{1}\right)=0$ and $\delta_{1}\left(G_{2}\right)=0$. The equality is attained if and only if $\delta_{i}\left(G_{1}\right)=0,2 \leq i \leq n$, and $\delta_{j}\left(G_{2}\right)=0,2 \leq j \leq m$. So, $G_{1} \cong \bar{K}_{n}$ and $G_{2} \cong \bar{K}_{m}$. This completes the proof.

Apply Theorems 3.12 and 3.13 to evaluate the ℓ-Estrada indices of the complete bipartite graphs, star graphs, $C P_{n}+2 K_{1}$ and $K_{n-2}+2 K_{1}$. Start with the complete bipartite graph $K_{n, m}$. We have:

$$
\begin{aligned}
\ell E E\left(K_{n, m}\right) & =\ell E E\left(\bar{K}_{n}+\bar{K}_{m}\right)=e^{2}+(n+m-2) e+1, \\
\ell E E\left(S_{n}\right) & =\ell E E\left(K_{1}+\bar{K}_{n-1}\right)=e^{2}+(n-2) e+1, \\
\ell E E\left(C P_{n}+2 K_{1}\right) & =e^{\frac{n+2}{n}}+(n-2) e^{\frac{n+1}{n}}+n e+1, \\
\ell E E\left(K_{n-2}+2 K_{1}\right) & =e^{\frac{n+1}{n-1}}+(n-3) e^{\frac{n}{n-1}}+n e+1 .
\end{aligned}
$$

Corollary 3.14. If $G_{j}, 1 \leq j \leq k$, is an r-regular $n-v e r t e x$ graph, then

$$
\begin{aligned}
\ell E E\left(\sum_{j=1}^{k} G_{j}\right) \leq & 1+e^{\frac{n(k-1)}{n(k-1)+r}}\left(\ell E E\left(G_{k}\right)-1\right)^{\frac{r}{n(k-1)+r}} \\
& +e^{\frac{n}{n(k-1)+r}}\left(\ell E E\left(\sum_{j=1}^{k-1} G_{j}\right)-1\right)^{\frac{n(k-2)+r}{n(k-1)+r}}+e^{\frac{n k}{n(k-1)+r}} .
\end{aligned}
$$

Corollary 3.15. If G is an r-regular graph n-vertex graph, then

$$
\begin{aligned}
\ell E E\left(G^{(k)}\right) \leq & 1+e^{\frac{n(k-1)}{n(k-1)+r}}(\ell E E(G)-1)^{\frac{r}{n(k-1)+r}} \\
& +e^{\frac{n}{n(k-1)+r}}(\ell E E((k-1) G)-1)^{\frac{n(k-2)+r}{n(k-1)+r}}+e^{\frac{n k}{n(k-1)+r}} .
\end{aligned}
$$

Theorem 3.16. If G is connected graph with n vertices, then

$$
\sqrt{n(n-1) e^{2}+4 R_{-1}(G)+5 n}<\ell E E(G)<e^{n}+R_{-1}(G)+\frac{n}{2}(3-n)-1
$$

Proof. Using a similar method as [15, Proposition 7], we have:

$$
\begin{aligned}
\ell E E(G) & =\sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{\left(\delta_{i}\right)^{k}}{k!} \\
& \leq \frac{5 n}{2}+R_{-1}(G)+\sum_{k \geq 3} \frac{1}{k!}\left(\sum_{i=1}^{n} \delta_{i}\right)^{k} \\
& =e^{n}+R_{-1}(G)+\frac{n}{2}(3-n)-1,
\end{aligned}
$$

resulting in the upper bound. If $\sum_{i=1}^{n} \delta_{i}{ }^{k}=\left(\sum_{i=1}^{n} \delta_{i}\right)^{k}$, then $\delta_{i}=0$, where $2 \leq i \leq n$. Thus, $G \cong \bar{K}_{n}$. Obviously, the right equality is impossible. On the other hand, $\ell E E(G)^{2}=\sum_{i=1}^{n} e^{2 \delta_{i}}+2 \sum_{1 \leq i<j \leq n} e^{\delta_{i}} e^{\delta_{j}}$ and so, by the arithmetic-geometric inequality

$$
\begin{aligned}
2 \sum_{1 \leq i<j \leq n} e^{\delta_{i}} e^{\delta_{j}} & \geq n(n-1)\left(\prod_{1 \leq i<j \leq n} e^{\delta_{i}} e^{\delta_{j}}\right)^{\frac{2}{n(n-1)}} \\
& =n(n-1)\left[\left(\prod_{i=1}^{n} e^{\delta_{i}}\right)^{n-1}\right]^{\frac{2}{n(n-1)}} \\
& =n(n-1) e^{2} .
\end{aligned}
$$

By means of a power-series expansion, we get

$$
\begin{aligned}
\sum_{i=1}^{n} e^{2 \delta_{i}} & =\sum_{i=1}^{n} \sum_{k \geq 0} \frac{\left(2 \delta_{i}\right)^{k}}{k!} \\
& =3 n+2\left(n+2 R_{-1}(G)\right)+\sum_{k \geq 3} \frac{\left(2 \delta_{i}\right)^{k}}{k!} \\
& \geq 4 R_{-1}(G)+5 n
\end{aligned}
$$

Therefore, $\ell E E(G)^{2}=n(n-1) e^{2}+4 R_{-1}(G)+5 n$. This implies the lower bound. If $\sum_{k \geq 3} \frac{\left(2 \delta_{i}\right)^{k}}{k!}=0$, then $\delta_{i}=0$ for $2 \leq i \leq n$. Thus, $G \cong \bar{K}_{n}$. The left equality is clearly impossible, proving the result.

Theorem 3.17. If G is a connected graph with $n>2$ vertices, then

$$
\ell E E(G)>2+\sqrt{n(n-1) e^{2}-6 n+4} .
$$

Proof. Using a similar method as in [19, Proposition 3.3], one can observe that for $k \geq 2, \sum_{i=1}^{n}\left(2 \delta_{i}\right)^{k} \geq 4 \sum_{i=1}^{n} \delta_{i}^{k}$ with equality for all $k \geq 2$ if and only if $\delta_{1}=$ $\cdots=\delta_{n}=0$, i.e., $G \cong \bar{K}_{n}$. Then

$$
\begin{aligned}
\sum_{i=1}^{n} e^{2 \delta_{i}} \geq \sum_{i=1}^{n} \sum_{k \geq 0} \frac{\left(2 \delta_{i}\right)^{k}}{k!} & =2 n+\sum_{k \geq 2} \frac{\sum_{i=1}^{n}\left(2 \delta_{i}\right)^{k}}{k!} \\
& \geq 2 n+4 \sum_{k \geq 2} \frac{\sum_{i=1}^{n} \delta_{i}^{k}}{k!} \\
& =2 n+4(\ell E E(G)-2 n)
\end{aligned}
$$

In Theorem 3.16, it was shown that $2 \sum_{1 \leq i<j \leq n} e^{\delta_{i}} e^{\delta_{j}} \geq n(n-1) e^{2}$. Thus,

$$
\ell E E(G)^{2} \geq 4 \ell E E(G)+n(n-1) e^{2}-6 n
$$

Note that $e^{x} \geq(1+x)$, so if $n>2$ then $n(n-1) e^{2}-6 n+4 \geq 3 n(n-1)-6 n+4 \geq 0$. Therefore,

$$
\ell E E(G) \geq 2+\sqrt{n(n-1) e^{2}-6 n+4}
$$

Since the graph is connected, the equality can not be attained.
Theorem 3.18. If G is a connected graph with n vertices, then $\ell E E(G)<$ $n-1+e^{\sqrt{\frac{n}{d_{\text {min }}}} \text {. }}$

Proof. By definition,

$$
\begin{aligned}
e^{-1} \ell E E(G)=\sum_{i=1}^{n} e^{\delta_{i}-1} & \leq n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left|\delta_{i}-1\right|^{k}}{k!} \\
& =n+\sum_{k \geq 1} \frac{1}{k!} \sum_{i=1}^{n}\left(\left|\delta_{i}-1\right|^{2}\right)^{\frac{k}{2}} \\
& \leq n+\sum_{k \geq 1} \frac{1}{k!}\left(\sum_{i=1}^{n}\left|\delta_{i}-1\right|^{2}\right)^{\frac{k}{2}} \\
& =n+\sum_{k \geq 1} \frac{1}{k!}\left(2 R_{-1}(G)\right)^{\frac{k}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =n-1+\sum_{k \geq 0} \frac{{\sqrt{\left(2 R_{-1}(G)\right)^{k}}}_{k!}^{k!}}{=n-1+e^{\sqrt{2 R_{-1}(G)}}}
\end{aligned}
$$

and by Lemma 1.2, $e^{-1} \ell E E(G) \leq n-1+e^{\sqrt{\frac{n}{d_{\text {min }}}}}$. Also, the equality occurs if only if $G \cong \bar{K}_{n}$, which is impossible.

Corollary 3.19. If G is an r-regular connected graph with n vertices, then

$$
\ell E E(G)<n-1+e^{\sqrt{\frac{n}{r}}}
$$

Theorem 3.20. If G is connected graph with n vertices, then

$$
\ell E E(G)>n-1+e^{\sqrt{n+2 R_{-1}(G)}}-\sqrt{n+2 R_{-1}(G)}
$$

Proof. Recall that $\sum_{i=1}^{n} \delta_{i}^{2}=n+2 R_{-1}(G)$. Using a similar method as [24, Proposition 3.1], for an integer $k \geq 3,\left(\sum_{i=1}^{n} \delta_{i}^{2}\right)^{k} \geq\left(\sum_{i=1}^{n} \delta_{i}^{k}\right)^{2}$, and then $\sum_{i=1}^{n} \delta_{i}^{k} \leq$ $\left(\sum_{i=1}^{n} \delta_{i}^{2}\right)^{\frac{k}{2}}=\left(n+2 R_{-1}(G)\right)^{\frac{k}{2}}$. It is easily seen that

$$
\begin{aligned}
\ell E E(G) & =2 n+\sum_{k \geq 2} \frac{1}{k!} \sum_{i=1}^{n} \delta_{i}^{k} \\
& \geq 2 n+(n-1) \sum_{k \geq 2} \frac{1}{k!}\left(\sqrt{n+2 R_{-1}(G)}\right)^{k} \\
& =n-1-\sqrt{n+2 R_{-1}(G)}+e^{\sqrt{n+2 R_{-1}(G)}}
\end{aligned}
$$

with equality if and only if at most one of $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ is non-zero, or equivalently $G \cong K_{2} \cup \bar{K}_{n-2}$ or $G \cong \bar{K}_{n}$, which is impossible.

Theorem 3.21. If G is connected graph with n vertices, then

$$
\ell E E(G) \geq n+1+(n-1) e^{\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}}-\sqrt{(n-1)\left(n+2 R_{-1}(G)\right)}
$$

with equality if and only if $G \cong K_{n}$.
Proof. Using a similar method as given in [19, Proposition 3.4] and by an inequality from $[16, \mathrm{p} .26]$, where $a_{1}, a_{2}, \ldots, a_{p}$ are non-negative numbers and $m \leq k$ with $m, k \neq 0$, we have:

$$
\left(\frac{1}{p} \sum_{i=1}^{p} a_{i}^{m}\right)^{\frac{1}{m}} \leq\left(\frac{1}{p} \sum_{i=1}^{p} a_{i}^{k}\right)^{\frac{1}{k}}
$$

Equality is attained if and only if $a_{1}=a_{2}=\cdots=a_{p}$. In above inequality, we substitute $m=2, p=n-1, a_{i}=\delta_{i}, 2 \leq i \leq n$ and $k \geq 2$. Then we have:

$$
\sum_{i=2}^{n} \delta_{i}^{k} \geq(n-1)\left(\frac{1}{n-1} \sum_{i=2}^{n} \delta_{i}^{2}\right)^{\frac{k}{2}}=(n-1)\left(\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}\right)^{k}
$$

which is an equality for $k=2$ whereas equality holds for $k \geq 3$ if and only if $\delta_{2}=\cdots=\delta_{n}$. By Lemma 1.3, this is equivalent to $G \cong \bar{K}_{n}$ or $G \cong K_{n}$. Since G is a connected graph, $G \cong K_{n}$. Clearly,

$$
\begin{aligned}
\ell E E(G) & =2 n+\sum_{k \geq 2} \frac{1}{k!} \sum_{i=1}^{n} \delta_{i}^{k} \\
& \geq 2 n+(n-1) \sum_{k \geq 2} \frac{1}{k!}\left(\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}\right)^{k} \\
& =2 n+(n-1)\left(e^{\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}}-\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}-1\right) \\
& =n+1+(n-1) e^{\sqrt{\frac{n+2 R_{-1}(G)}{n-1}}}-\sqrt{(n-1)\left(n+2 R_{-1}(G)\right)}
\end{aligned}
$$

with equality if and only if the lower bound for $\sum_{i=2}^{n} \delta_{i}^{k}$ above is attained for $k \geq 3$, if and only if $G \cong K_{n}$.

4. Bounds for the ℓ-Estrada Index

We recall that the normalized Laplacian energy of the graph G is defined as $E_{\ell}(G)=\sum_{i=1}^{n}\left|\delta_{i}-1\right|[8]$. In this section, the relationship between the ℓ-Estrada index and the normalized Laplacian energy of graphs are investigated.
Theorem 4.1. If G is connected, then $\ell E E(G)<e\left(n-1+e^{E_{\ell}(G)}\right)$.
Proof. By definition, we have

$$
\begin{aligned}
e^{-1} \ell E E(G) & =\sum_{i=1}^{n} e^{\delta_{i}-1} \\
& =\sum_{i=1}^{n} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\delta_{i}-1\right)^{k} \\
& =n+\sum_{i=1}^{n} \sum_{k \geq 2} \frac{1}{k!}\left(\delta_{i}-1\right)^{k} \\
& \leq n+\sum_{k \geq 2} \frac{1}{k!}\left(\sum_{i=1}^{n}\left|\delta_{i}-1\right|\right)^{k}
\end{aligned}
$$

$$
=n-1+e^{E_{\ell}(G)},
$$

with equality if and only if $\sum_{i=1}^{n}\left(\delta_{i}-1\right)^{k}=\left(\sum_{i=1}^{n}\left|\delta_{i}-1\right|\right)^{k}$ if and only if $\delta_{i}=0,1 \leq$ $i \leq n$, if and only if G is an empty graph with n vertices, which is impossible.

In [5], the authors introduced the notion of the Randić matrix of a graph G as $R(G)=\left[R_{i, j}\right]_{n \times n}$, where

$$
R_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\sqrt{\operatorname{deg}\left(v_{i}\right) \operatorname{deg}\left(v_{j}\right)}} & \text { if } v_{i} \text { is and adjacent to } v_{j} \\
0 & \text { otherwise }
\end{array} .\right.
$$

The Randić energy of G is defined by $E_{R}(G)=\sum_{i=1}^{n}\left|\tau_{i}\right|$, where τ_{i} 's are the eigenvalues of Randić matrix $R(G)$.
Corollary 4.2. If G is connected then $\ell E E(G)<e\left(n-1+e^{E_{R}(G)}\right)$.
Proof. The proof is follows from [5, Theorem 2] and Theorem 4.1.
Theorem 4.3. If G is a connected graph with n vertices, then

$$
e^{-1} \ell E E(G)-E_{\ell}(G)<n-1-\sqrt{\frac{n}{d_{\min }}}+e^{\sqrt{\frac{n}{d_{\min }}}}
$$

Proof. In the proof of Theorem 3.18, the following inequality is proved:

$$
e^{-1} \ell E E(G) \leq n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left|\delta_{i}-1\right|^{k}}{k!}
$$

On the other hand, by definition of the normalized Laplacian energy,

$$
e^{-1} \ell E E(G) \leq n+E_{\ell}(G)+\sum_{i=1}^{n} \sum_{k \geq 2} \frac{\left|\delta_{i}-1\right|^{k}}{k!}
$$

Thus,

$$
\begin{aligned}
e^{-1} \ell E E(G)-E_{\ell}(G) & \leq n+\sum_{i=1}^{n} \sum_{k \geq 2} \frac{\left|\delta_{i}-1\right|^{k}}{k!} \\
& \leq n-1-\sqrt{2 R_{-1}(G)}+e^{\sqrt{2 R_{-1}(G)}} .
\end{aligned}
$$

We now apply Lemma 1.2 , to get $e^{-1} \ell E E(G)-E_{\ell}(G) \leq n-1-\sqrt{\frac{n}{d_{\text {min }}}}+e^{\sqrt{\frac{n}{d_{\text {min }}}}}$.
The equality is attained if and only if $G \cong \bar{K}_{n}$, which is impossible.
Corollary 4.4. If G is an r-regular n-vertex graph, then

$$
\begin{aligned}
& e^{-1} \ell E E(G)-E_{\ell}(G)<n-1-\sqrt{\frac{n}{r}}+e^{\sqrt{\frac{n}{r}}} \\
& e^{-1} \ell E E(G)-E_{R}(G)<n-1-\sqrt{\frac{n}{r}}+e^{\sqrt{\frac{n}{r}}} .
\end{aligned}
$$

Theorem 4.5. Let p, q and s be, respectively, the numbers of normalized Laplacian eigenvalues which are greater than, equal to, and less than 1. Then

$$
\ell E E(G) \geq e\left(q+p e^{\frac{E_{\ell}(G)}{2 p}}+s e^{-\frac{E_{\ell}(G)}{2 s}}\right)
$$

Proof. Let $\delta_{1}, \ldots, \delta_{p}$ be the normalized Laplacian eigenvalues of G greater than 1 , and $\delta_{n-s+1}, \ldots, \delta_{n}$ be the normalized Laplacian eigenvalues less than 1 . Since the sum of normalized Laplacian eigenvalues of a connected graph G is n and

$$
E_{\ell}(G)=2 \sum_{i=1}^{p}\left(\delta_{i}-1\right)=-2 \sum_{i=n-s+1}^{n}\left(\delta_{i}-1\right)
$$

by the arithmetic-geometric mean inequality, we have:

$$
\sum_{i=1}^{p} e^{\delta_{i}} \geq p e^{\frac{\delta_{1}+\cdots+\delta_{p}}{p}}=p e^{\frac{E_{\ell}(G)}{2 p}+1} ; \sum_{i=n-s+1}^{n} e^{\delta_{i}} \geq p e^{\frac{\delta_{n}-s+1+\cdots+\delta_{n}}{s}}=s e^{-\frac{E_{\ell}(G)}{2 s}+1}
$$

and for eigenvalues equal to $1, \sum_{i=p+1}^{n-s} e^{\delta_{i}}=q e$. Now, the result is obtained by combining these inequalities.

References

1. S. K. Ayyaswamy, S. Balachandran, Y. B. Venkatakrishnana and I. Gutman, Signless Laplacian Estrada Index, MATCH Commun. Math. Comput. Chem. 66 (2011), 785-794.
2. T. Aleksić, I. Gutman and M. Petrović, Estrada index of iterated line graphs, Bull. Cl. Sci. Math. Nat. Sci. Math. 134 (2007), 33-41.
3. H. R. Bamdad, F. Ashraf and I. Gutman, Lower bounds for Estrada index and Laplacian Estrada index, Appl. Math. Lett. 23 (2010), 739-742.
4. N. Biggs, Algebraic Graph Theory, Cambridge University Press. Cambridge, 1993.
5. Ş. Burcu Bozkurt, A. Dilek Güngör, I. Gutman and A. Sinan Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250.
6. S. Butler, Eigenvalues and Structures of Graphs, PhD Thesis, University of California, San Diego, 2008.
7. M. Cavers, The Normalized Laplacian Matrix and General Randić Index of Graphs, Ph.D. Thesis, University of Regina, 2010.
8. M. Cavers, S. Fallat and S. Kirkland, On the normalized Laplacian energy and general Randic index R_{-1} of graphs, Linear Algebra Appl. 433 (2010), 172-190.
9. F. R. K. Chung, Spectral Graph Theory, American Math. Soc. Providence, 1997.
10. D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Applications, Academic Press, New York, 1980.
11. J. A. De la Peña, I. Gutman and J. Rada, Estimating the Estrada index, Linear Algebra Appl. 427 (2007), 70-76.
12. E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000), 713-718.
13. E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002), 697-704.
14. E. Estrada, Topological structural classes of complex networks, Phys. Rev. E 75 (2007), 016103.
15. G. H. Fath-Tabar, A. R. Ashrafi and I. Gutman, Note on Estrada and L-Estrada indices of graphs, Bull. Cl. Sci. Math. Nat. Sci. Math. 34 (2009), 1-16.
16. I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. (Beograd), 83 (2008), 1-7.
17. I. Gutman and A. Graovac, Estrada index of cycles and paths, Chem. Phys. Lett. 436 (2007), 294-296.
18. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1988.
19. J. Li, W. C. Shiu and A. Chang, On the Laplacian Estrada index of a graph, Appl. Anal. Discrete Math. 3 (2009), 147-156.
20. J. P. Liu and B. L. Liu, Bounds of the Estrada index of graphs, Appl. Math. J. Chinese Univ. 25 (2010), 325-330.
21. L. Shi, Bounds on Randic indices, Discrete Math. 309 (2009), 5238-5241.
22. W. Yan, Y.-N. Yeh and F. Zhang, The asymptotic behavior of some indices of iterated line graphs of regular graphs, Discrete Appl. Math. 160 (2012), 1232-1239.
23. F. J. Zhang, Y. -C. Chen and Z. B. Chen, Clique-inserted graphs and spectral dynamics of clique-inserting, J. Math. Anal. Appl. 349 (2009), 211-225.
24. B. Zhou and I. Gutman, More on the Laplacian Estrada index, Appl. Anal. Discrete Math. 3 (2009), 371-378.

Mardjan Hakimi-Nezhaad received her M.Sc. from the University of Kashan, 2013. Her research interests are alegebraic graph theory and mathematical chemistry.
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran.

Hongbo Hua

Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China. Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China.
e-mail: hongbo.hua@gmail.com
Ali Reza Ashrafi received his M.Sc. from Shahid Beheshti University, and Ph.D. from the University of Tehran under direction of professor Mohammad reza darafsheh. He is currently a professor at the University of Kashan since 1994. His research interests are computational group theory, graph theory and mathematical chemistry.
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran.
e-mail: ashrafi@kashanu.ac.ir

Shuhua Qian

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China.

[^0]: Received May 8, 2013. Revised July 15, 2013. Accepted July 18, 2013 * Corresponding author. ${ }^{\dagger}$ The research of the first and third authors was partially supported by the University of Kashan under grant no 159020/19. The second author was supported in part by NSF of the Higher Education Institutions of Jiangsu Province (No. 12KJB110001), NSFC (No. 11201227), SRF of HIT (No. HGA1010) and Qing Lan Project of Jiangsu Province, PR China.
 (c) 2014 Korean SIGCAM and KSCAM.

