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THEORETICAL DEPENDENCE CONCEPTS FOR

STOCHASTIC PROCESSES†

SO-YOUN KIM AND JONG-IL BAEK∗

Abstract. We in this paper obtained the theoretical results for multi-
variate stochastic processes which help us to extended negatively orthant
dependent(ENOD) structures among hitting times of the processes. In
addition, some applications are given to illustrate these concepts.
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1. Introduction

We first present some definitions in this section.

Definition 1.1 (Lehmann(1966)). Random variables X and Y are said to be
negatively dependent(ND) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) (1.1)

for all x, y ∈ R. A collection of random variables is said to be pairwise negatively
dependent(PND) if every pair of random variables in the collection satisfies (1.1).
It is important to note that (1.1) implies that

P (X > x, Y > y) ≤ P (X > x)P (Y > y) (1.2)

for all x, y ∈ R. Moreover, it follows that (1.2) implies (1.1), and, hence,
(1.1) and (1.2) are equivalent. However, (1.1) and (1.2) are not equivalent for a
collection of 3 or more random variables. Consequently, the following definition
is needed to define sequences of negatively dependent random variables.
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Definition 1.2 (Joag-Dev and Proschan(1983)). A sequence {Xi, 1 ≤ i ≤ n}
of random variables is said to be negatively upper orthant dependent(NUOD) if
for all real numbers x1, · · · , xn,

P (X1 > x1, · · · , Xn > xn) ≤
n∏

i=1

P (Xi > xi) (1.3)

and it is said to be negatively lower orthant dependent(NLOD) if for all real
numbers x1, · · · , xn,

P (X1 ≤ x1, · · · , Xn ≤ xn) ≤
n∏

i=1

P (Xi ≤ xi) (1.4)

A sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be negatively orthant
dependent(NOD) if it is both (1.3) and (1.4).

Definition 1.3 (Liu(2009)). A sequence {Xi, 1 ≤ i ≤ n} of random variables is
said to be extended negatively upper orthant dependent(ENUOD) if for all real
numbers x1, · · · , xn, there exists a constant M > 0 such that

P (X1 > x1, · · · , Xn > xn) ≤ M
n∏

i=1

P (Xi > xi) (1.5)

and it is said to be extended negatively lower orthant dependent(ENLOD) if for
all real numbers x1, · · · , xn, there exists a constant M > 0 such that

P (X1 ≤ x1, · · · , Xn ≤ xn) ≤ M

n∏
i=1

P (Xi ≤ xi) (1.6)

A sequence {Xi, 1 ≤ i ≤ n} of random variables is said to be extended negatively
orthant dependent(ENOD) if it is both (1.5) and (1.6).

Lehmann(1966) introduced various concepts of dependence for two random
variables. Esary and Proschan(1972) were later developed the stronger notio ns
of bivariate dependence. Ahmed et al.(1978), Ebrahimi and Ghosh(1981), and
Joag-Dev and Proschan(1983) obtained multivariate versions of various bivari-
ate positive and negative dependence as described by Lehmann, and Esary and
Proschan. In addition, for other related dependence concepts, many authors had
been generalized and extended to several directions and their concept has been
very useful in reliability theory and applications; (see Baek(1995), Barlow and
Proschan(1975), Block et al.(1981, 1983, 1988), Brindly and Thompson(1972),
Choi and Baek(2013), Glaz and Johnson(1982)). Recently, Liu(2009) introduced
the concepts of extended negatively dependence in the multivariate case. Con-
cepts of dependence have subsequently been extended to stochastic processes in
different directions by many authors;(see Berman (1977), (1978) and Cox and
Isham(1980), Ebrahimi(1987, 1994), Ebrahimi and Ramallingam(1988, 1989),
Friday(1981), Marshall and Shaked(1983)).



Theoretical dependence concepts for stochastic processes 163

Multivariate stochastic processes arise when instead of observing a single pro-
cess we observe several processes, say X1(t), · · · , Xn(t), simultaneously. For ex-
ample, we may want to study the simultaneous variation of current and voltage,
or temperature, pressure and volume over time and we also may be interested
in studying inflation rates and money supply, unemployment and interest rates.
We could, of course, study each quantity on its own and treat each as a separate
univariate process. Although this would give us some information about each
quantity it could never give information about the interrelationship between var-
ious quantities. This leads us to introduce some concepts of negative dependence
for multivariate stochastic processes. To introduce the new ideas involved in the
study of multivariate processes we consider the multivariate stochastic processes.

The main purpose of this paper introduce various concepts of extended neg-
ative dependence for multivariate stochastic processes, namely extended nega-
tively orthant dependent(ENOD), negatively associated(NA), right corner set
decreasing(RCSD), and right tail decreasing in sequence(RTDS). The theoreti-
cal results of these concepts are studied in Section 3. Some applicat ions of these
concepts are developed in Section 4.

2. Preliminaries

In this section we present definitions and notations which will be used through
out this paper. Suppose that {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are stochastic
processes. The state space of Xi(t) will be taken to be a subset Ei of real line
R+ = [0,∞], i = 1, 2, · · · , n. For any state ai ∈ Ei, i = 1, 2, · · · , n, we now
define the random times as follows,

Si(ai) = inf{t|Xi(t) ≥ ai, 0 ≤ t ≤ ∞},
that is, Si(ai) is the first hitting times that the process Xi(t) reaches ai.

Definition 2.1. Stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are said
to be extended negatively upper orthant dependent(ENUOD) if for all ti and
ai, i = 1, 2, · · · , n, there exists a constant M > 0 such that

P (S1(a1) > t1, · · · , Sn(an) > tn) ≤ MP (S1(a1) > t1) · · ·P (Sn(an) > tn) (2.1)

and they are said to be extended negatively lower orthant dependent (ENLOD)
if for all ti and ai, i = 1, 2, · · · , n, there exists a constant M > 0 such that

P (S1(a1) ≤ t1, · · · , Sn(an) ≤ tn) ≤ MP (S1(a1) ≤ t1) · · ·P (Sn(an) ≤ tn) (2.2)

Stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are said to be extended
negatively orthant dependent(ENOD) if it is both ENUOD and ENLOD.
It is clear that stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are called
NOD if (2.1) and (2.2) hold when M = 1. Obviously, an NOD stochastic pro-
cesses must be an ENOD stochastic processes. Therefore, the ENOD structure
is substantially more comprehensive than the NOD structure and ENOD struc-
ture can reflect not only a negative dependence structure but also positive one,
to some extend.
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Definition 2.2. Stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are said
to be negatively associated if for all ai, i = 1, 2, · · · , n, and increasing functions
f and g for which the covariance exists,

Cov(f(S1(a1), · · · , Sn(an)), g(S1(a1), · · · , Sn(an))) ≤ 0.

Definition 2.3. Stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are said
to be right corner set decreasing(RCSD) if for all ai and ti, i = 1, · · · , n,

P (

n∩
i=1

Si(ai) > ti|
n∩

i=1

Si(ai) > t′i)

decreasing in t′1, · · · , t′n for every choice of t1, · · · , tn.

Definition 2.4. Stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are said
to be right tail decreasing in sequence(RTDS) if for all ai and ti, i = 1, 2, · · · , n,

P (Si(ai) > ti|S1(a1) > t1, · · · , Si−1(ai−1) > ti−1)

decreasing in t1, · · · , ti−1.

3. Theoretical Results for Multivariate Stochastic Processes

Theorem 3.1. Suppose that stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥
0} are RCSD. Then {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are RTDS.

Proof. Let stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are RCSD.
Then P (

∩n
i=1 Si(ai) > ti|

∩n
i=1 Si(ai) > t′i) is decreasing in t′1, · · · , t′n for all

choices of t1, · · · , tn. Therefore, for fixed j,

P (Sj(aj) > tj ,
∩n

i=1 Si(ai) > t′i)

P (
∩n

i=1 Si(ai) > t′i)

is decreasing in t′1, · · · , t′n for all choices of tj . Now putting t′i → 0 for all
i = 1, · · · , j − 1, we can obtain that

P (Sj(aj) > tj |Sj−1(aj−1) > t′j−1, · · · , S1(a1) > t′1)

is decreasing in t′1, · · · , t′j−1 for all choices of tj . Since j is arbitrary, {X1(t)|t ≥
0}, · · · , {Xn(t)|t ≥ 0} are RTDS. �

Next, we now show that RTDS implies ENOD.

Theorem 3.2. Suppose that the stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|
t ≥ 0} are RTDS, then they are ENOD.

Proof. We prove only this result for RTDS implies ENUOD.

P (S1(a1) > t1, · · · , Sn(an) > tn)

= P (S1(a1) > t1|S2(a2) > t2, · · · , Sn(an) > tn)P (S2(a2) > t2, · · · , Sn(an) > tn)

≤ MP (S1(a1) > t1)
n∏

i=2

P (Si(ai) > ti,

n−1∩
j=1

Sj(aj) > tj) by RTDS
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= M

n∏
i=1

P (Si(ai) > ti), by taking tj → 0(j = 1, · · · , i− 1).

The proof of the ENLOD is similar to that of ENUOD. �

Theorem 3.3. Suppose that stochastic processes {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥
0} are ENOD and let f1, · · · , fn are nonnegative increasing functions. Let
Y1, Y2, · · · , Yn be independent of {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} and P (S1(a1)
> t1), · · · , P (Sn(an) > tn) be increasing or decreasing in both a1, a2, · · · , an and
t1, t2, · · · , tn, then {f1(X1(t))+Y1|t ≥ 0}, · · · {fn(Xn(t))+Yn|t ≥ 0} are ENOD.

Proof. We prove only this result for ENUOD. Let Si(ai) = inf{s|fi(Xi(s))+Yi ≥
ai} and Ti(bi)=inf{t|Xi(t) ≥ bi}, i = 1, · · · , n. Then
P (S1(a1) > t1, · · · , Sn(an) > tn)

= P ((inf{s|f1(X1(s)) + Y1 ≥ a1}) > t1, · · · , (inf{s|fn(Xn(s)) + Yn ≥ an}) > tn)

= P ((inf{s|X1(s) ≥ f−1
1 (a1 − y1)}) > t1, · · · , (inf{s|Xn(s) ≥ f−1

n (an − yn)}) > tn)

= P (T1(f
−1
1 (a1 − y1)) > t1, · · · , Tn(f

−1
n (an − yn)) > tn)

≤ M
∏n

i=1 P (Ti(f
−1
i (ai − yi)) > ti) = M

∏n
i=1(Si(ai) > t) for every ti’s and ai’s.

The proof of ENLOD is similar to that proof of ENUOD. �

Remark 3.1. Theorem 3.3 can be proved for NA(RCSD(RTDS)) concepts of
dependence.

Theorem 3.4. Suppose that stochastic processes (a) {X1(t)|t ≥ 0}, · · · , {Xn(t)|
t ≥ 0} are ENOD, (b) {X1(t)|t ≥ 0}, · · · , {Xn(t)|t ≥ 0} are multivariate sto-
chastic processes with state spaces {a1, b1}, {a2, b2}, · · · , {an, bn}, respectively,
and (c) max(a1, b1),max(a2, b2), · · · ,max(an, bn) are absorbing states. Then
for all a1, a2, · · · , an and t1, t2, · · · , tn,

P (X1(t1) > a1, X2(t2) > a2, · · · , Xn(tn) > an)

≤ MP (X1(t1) > a1)P (X2(t2) > a2) · · ·P (Xn(tn) > an).

Proof. We prove only this result for ENUOD. Without loss of generality assume
that a1 < b1, a2 < b2, · · · , an < bn. Now,

P (X1(t1) > a1, X2(t2) > a2, · · · , Xn(tn) > an)

= P (X1(t1) = b1, X2(t2) = b2, · · · , Xn(tn) = bn)

≤ MP (S1(b1) ≤ t1, S2(b2) ≤ t2, · · ·Sn(bn) ≤ tn)

≤ MP (S1(b1) ≤ t1)P (S2(b2) ≤ t2) · · ·P (Sn(bn) ≤ tn)

= MP (X1(t1) = b1)P (X2(t2) = b2) · · ·P (Xn(tn) = bn)

= MP (X1(t1) > a1)P (X2(t2) > a2) · · ·P (Xn(tn) > an).

�

Next, we prove that the next limit theorem demonstrates preservation of the
ENOD among the hitting times.
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Theorem 3.5. Let {X1n(t)|t ≥ 0}, · · · , {Xpn(t)|t ≥ 0} be RTDS stochastic
processes with distribution functions Hn such that Hn weakly converges to H as
n → ∞ where H is the distribution functions of stochastic processes {X1(t)|t ≥
0}, · · · , {Xp(t)|t ≥ 0}. Then {X1(t)|t ≥ 0}, · · · , {Xp(t)|t ≥ 0} are ENOD.

Proof. We prove only this result for ENUOD.
P (S1(a1) > t1, · · · , Sp(ap) > tp)
= limn→∞(P (S1n(a1n) > t1n|S2n(a2n) > t2n, · · · , Spn(apn) > tpn))

· (P (S2n(a2n) > t2n, · · · , Spn(apn) > tpn))

≤ MP (S1(a1) > t1) limn→∞
∏p

i=2 P (Sin(ain) > tin,
∩p−1

j=1 Sjn(ajn) > tjn) by RTDS

= MP (S1(a1) > t1)
∏p

i=2 limn→∞ P (Sin(ain) > tin) by taking tj → (0 ≤ j ≤ i− 1)

= M
∏p

i=1 P (Si(ai) > ti).

The proof of the ENLOD is similar to that of ENUOD. �

Remark 3.2. If we change RTDS to ENOD, we can get results of ENOD.

Theorem 3.6. Let Y1(t) =
∑N(t)

j=1 X1j , · · · , Yk(t) =
∑N(t)

j=1 Xkj be processes

and let {(X1n, · · · , Xkn|n ≥ 1} be a k-variate stochastic processes such that
(a) (X11, · · · , Xk1, (X12, · · · , Xk2), · · · are independent and (b) X1i, · · · , Xki are
ENOD, i = 1, 2, · · · , (c) N(t) is a Poisson process which is independent of
X ′

1is,X
′
2is, · · · , X ′

kis, i = 1, 2, · · · . Then {Y1(t)|t ≥ 0}, · · · {Yk(t)|t ≥ 0} are
ENOD.

Proof. We prove only this result for ENLOD.
P (S1(a1) ≤ t1, · · · , Sk(ak) ≤ tk)

= P ({
∑N(s)

j=1 X1j ≥ a1, t1 ≤ s < ∞}, · · · {
∑N(s)

j=1 Xkj ≥ ak, t ≤ s < ∞})
= P ((

∑N(t1)
j=1 X1j ≥ a1), · · · , (

∑N(tk)
j=1 Xkj ≥ ak)

=
∑∞

k1=0 · · ·
∑∞

kn=0(P (
∑k1

j=1 X1j ≥ a1, · · · ,
∑kn

j=1 Xkj ≥ ak|N(t1) = k1, · · · ,

N(tk) = kn)) · (P (N(t1) = k1, · · · , N(tk) = kn))

=
∑∞

k1=0 · · ·
∑∞

kn=0(P (
∑k1

j=1 X1j ≥ a1, · · · ,
∑kn

j=1 Xkj ≥ an))·

(P (N(t1) = k1, · · · , N(tk) = kn)) by (c)

≤ M
∑∞

k1=0 · · ·
∑∞

kn=0(P (
∑k1

j=1 X1j ≥ a1)P (
∑kn

j=1 Xkj ≥ an)P (N(t1) = k1, · · · ,

N(tk) = kn)) by (a) and (b)

= M(
∑∞

k1=1 P (
∑k1

j=1 X1j ≥ a1|(N(t1) = k1))P (N(t1 = k1))) · · ·

(
∑∞

kn=0 P (
∑kn

j=1 Xkj ≥ an|(N(tk) = kn)P (N(tk) = kn)))

= MP ({
∑N(s)

j=1 X1j ≥ a1, t1 ≤ s < ∞}) · · ·P ({
∑N(s)

j=1 Xkj ≥ ak, tk ≤ s < ∞})
= MP (S1(a1) ≤ t1) · · ·P (Sk(ak) ≤ tk).
The proof of the ENUOD is similar to that of ENLOD. �
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Remark 3.3. Let (a) and (c) hold, and if X1i, · · · , Xki are NA(RCSD(RTDS)),

i = 1, 2, · · · , then we can get that Y1(t) =
∑N(t)

j=1 X1j , · · · , Yk(t) =
∑N(t)

j=1 Xkj

are NA(RCSD(RTDS)).

Theorem 3.7. Let {(X1n, X2n, X3n, · · · , Xkn)|n ≥ 1} be stochastic processes
such that (X11, X21, X31, · · · , Xk1), (X12, X22, X32, · · · , Xk2), · · · are indepen-
dent and X1i, X2i, X3i, · · · , Xki, i = 1, 2, · · · are ENOD. Then {(X1n, X2n, X3n,
· · · , Xkn)|n ≥ 1} is ENOD.

Proof. Let P (T1(x1) > n1, T2(x2) > n2, · · · , Tn(xn) > nk)
= P (X11 > x1, X12 > x1, · · · , X1n > x1, X21 > x2, X22 > x2, · · · , X2n > x2,

· · · , Xkn1 > x1, Xkn2 > x2, · · · , Xknk
> xn).

�

Now consider the following cases.
Case 1. When n1 = n2 = n3 = · · · = nk,
P (T1(x1) > n1, T2(x2) > n2, · · · , Tn(xn) > nk)
= P (X11 > x1, X12 > x1, · · · , X1n1 > x1, X21 > x2, X22 > x2, · · · ,

X2n2 > x2, · · · , Xkn1 > xn, Xkn2 > xn, · · · , Xknk
> xn)

= P (X11 > x1, X12 > x1, X13 > x1, · · · , Xkn1 > xn)P (X12 > x1,

X22 > x2, · · · , Xkn2 > xn) · · ·P (X1n1 > x1, X2n2 > x2, · · · , Xknk
> xn)

≤ MP (X11 > x1, X12 > x2, X13 > x1, · · · , X1n1 > x1) · P (X21 > x2,

X22 > x2, · · · , X2n2 > x2) · · ·P (X1n1 > x1, X2n2 > x2, · · · , Xknk
> xn)

= MP (T1(x1) > n1)P (T2(x2) > n2) · · ·P (Tn(xn) > nk).
Case 2. When n1 < n2 < n3 < · · · < nk,
P (T1(x1) > n1, T2(x2) > n2, · · · , Tn(xn) > nk)
P (X11 > x1, X12 > x2, · · · , X1n1 > x1, X21 > x2, X22 > x2, · · · , X2n1 > x2,
X2n1+1 > x2, · · · , X2n2 > x2, · · · , Xkn1 > xn, Xkn2 > xn, · · · , Xkn+1+1 > xn,

· · · , Xknk
> xn)

≤ MP (X11 > x1, X21 > x2, · · · , Xkn1 > xn)P (X2n1+1 > x2, X2n1+2 > x2, · · · ,

Xkn1+1 > xn, · · · , Xknk
> xn)

= MP (T1(x1) > n1)P (T2(x2) > n2) · · ·P (Tn(xn) > nk).
Case 3. The proof of n1 > n2 > n3 > · · · > nk is similar to Case 2.

4. Applications

Application 4.1. We consider the uniformly modulated model(see Priestly
(1988)) such that non-stationary processes X(t) = {X1(t), X2(t), · · · , Xn(t)|t ≥
0} and Y (t) = {Y1(t), Y2(t), · · · , Yn(t)|t ≥ 0} given by

X(t) = a(t)Y (t), t ≥ 0,
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where a(t) is a deterministic continuous function such that a(t) ≥ 0 and Y (t)
is non-negative stationary process. If Y (t) is ENOD, we can show that X(t)
is ENOD. Using the Theorem 3.3, if fi, i = 1, · · · , n are increasing func-
tions, we can obtain that f1(S1(a1)), · · · , fn(Sn(an)) are ENOD, where Si(ai) =
inf{n|Xi(n) ≥ ai}, i = 1, · · · , n.
Application 4.2. Suppose that we are given a system with n components which
is subjected to shocks and assume that N(t) be the number of shocks received

by time t and let Y1(t) =
∑N(t)

i=1 X1i+Z1i, Y2(t) =
∑N(t)

i=1 X2i+Z2i, · · · , Yn(t) =∑N(t)
i=1 Xni + Zni be total damages to components 1, 2, · · · , n by time t, respec-

tively, where X1i, X2i, · · · , Xni and Z1i, Z2i, · · · , Zni are damages to components
1, 2, · · · , and n by shocks, respectively. Let (X1i, · · · , Xni) and (Z1i, · · · , Zni)
be ENOD respectively, i = 1, 2, · · · , and let (X11, · · · , Xn1), (X12,
· · · , Xn2) · · · and (Z11, · · · , Zn1), (Z12, · · · , Zn2) · · · are independent and have
increasing paths. Then by Theorem 3.6, we can get that {Y1(t)|t ≥ 0}, · · · {Yn(t)|t
≥ 0} are ENOD.

Application 4.3. Let Zi(t), i = 1, 2, · · · , n be the strength of system i at
time t and let Di, i = 1, 2, · · · , n be i.i.d. positive random variables denoting
the damage to either system due to the ith shock and N(t) be the number of
shocks occurring by time t. Then the stress experienced by either system at

time t is given by the process X(t) =
∑N(t)

i=1 Di. Suppose that Z1(t), · · · , Zn(t)
are independent processes with decreasing sample paths and that the processes
X(t), Z1(t), · · · , Zn(t) are independent, then we can obtain using Theorem 3.6
and Application 4.2 that X(t)−Z1(t), X(t)−Z2(t), · · · , X(t)−Zn(t) are ENOD
processes. Thus the lifetimes of the multivariate systems, namely, Si(ai) =
inf{t|X(t)−Zi(t) ≥ ai}, i = 1, 2, · · · , n are ENOD random variables. Therefore,
we can get that

P (S1(ai) > t1, · · · , Sn(ai) > tn) ≤ M
n∏

i=1

P (Si(ai) > ti)

and

P (S1(ai) ≤ t1, · · · , Sn(ai) ≤ tn) ≤ M
n∏

i=1

P (Si(ai) ≤ ti)
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