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1. Introduction

Generalized convexity plays an important role in many aspects of optimiza-
tion, such as optimality conditions, duality theorems, variational inequalities,
saddle point theory and convergence of optimization algorithms, so the research
on generalized convexity is one of the important aspects of mathematical pro-
gramming problems.

The problem in which objective functions are ratio of two functions are termed
as fractional programming problems. Such problems are studied in various fields
like economics [3], information theory [12], heat exchange networking [24] and
others. Duality in multiobjective fractional programming problems involving
generalized convex functions have been of much interest in recent past, (see
[4, 5, 8, 14, 16, 18, 22]) and the references cited therein. For more information
about fractional programming problems, the reader may consult the research
bibliography compiled by Stancu-Minasian [19, 20, 21].
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Mukherjee [13] considered a multiobjective fractional programming problem
and discussed the Mond-Weir type duality results under generalized convex-
ity. Gulati and Ahmad [6] proved the duality results using Fritz John conditions
for multiobjective programming problem involving generalized convex functions.
Kaul et al. [9] derived duality results for a Mond-Weir type dual problem related
to multiobjective fractional programming problem involving pseudolinear and η-
pseudolinear functions. Osuna-Gómez et al. [15] focus his study to establish the
optimality condition and duality theorems for a class of multiobjective fractional
programs under generalized convexity assumptions by applying parametric ap-
proach.

The notion of convexity was not enough to meet the challenging demand of
some problems on Economics and Engineering. To meet this demand the notion
of invexity was introduced by Hanson [7] by substituting the linear term (x− y)
appearing in the definition of convex functions with an arbitrary vector valued
function.

Antczak [2] introduced a new class of functions named (p, r)-invex function,
which is an extension of invex function. Recently, Jayswal et al. [8] focus his
study on multiobjective fractional programming problems and derived sufficient
optimality conditions and duality theorems involving (p, r) − ρ − (η, θ)-invex
functions [11].

Yuan et al. [23] introduced new types of generalized convex functions and sets,
which are called locally (Hp, r, α)−pre-invex and locally Hp-invex sets. They
obtained also optimality conditions and duality theorems for a scalar nonlinear
programming problem. Recently, Liu et al. [10] proposed the concept of (Hp, r)-
invex function and focus his study to discuss sufficient optimality conditions to
multiple objective programming problem and multiobjective fractional program-
ming problem involving the aforesaid class of functions but no step was taken
to prove the duality results involving (Hp, r)-invex functions.

In this paper, viewing the importance of duality theorems in optimization
theory, we establish weak, strong and strict converse duality theorems involving
(Hp, r)-invex function to three types of dual models related to mulitiobjective
fractional programming problems. The organization of the remainder of this
paper is as follows. The formulation of multiobjective fractional programming
problem along with some definitions and notations related to (Hp, r)-invexity is
given in Section 2. Weak, strong and strict converse duality theorems for three
types of dual models related to multiobjective fractional programming problem
under (Hp, r)-invexity are derived in Section 3 to Section 5. Finally, conclusions
and further developments are given in Section 6.

2. Notation and Preliminaries

Throughout the paper, let Rn be the n-dimensional Euclidean space, Rn
+ =

{x ∈ Rn | x ≥ 0} and Ṙn
+ = {x ∈ Rn | x > 0}. Let x, y ∈ Rn. Then

x ≼ y ⇔ xi ≤ yi, i = 1, 2, · · · , n and x ̸= y.
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Definition 2.1 ([2]). Let a1, a2 > 0, λ ∈ (0, 1) and r ∈ R. Then the weighted
r-mean of a1 and a2 is given by

Mr(a1, a2;λ) =

{
(λa1

r + (1− λ)ar2)
1
r , for r ̸= 0

aλ1a
(1−λ)
2 , for r = 0.

Definition 2.2 ([23]). X ⊂ Rn is locally Hp-invex set if and only if, for any
x,u ∈ X, there exist a maximum positive number a(x, u) ≤ 1 and a vector
function Hp : X ×X × [0, 1] → Rn, such that

Hp(x, u; 0) = eu, Hp(x, u;λ) ∈ Ṙn
+

ln(Hp(x, u;λ)) ∈ X, ∀ 0 < λ < a(x, u) for p ∈ R,

and Hp(x, u;λ) is continuous on the interval (0, a(x, u)), where the logarithm
and the exponentials appearing in the relation are understood to be taken com-
ponentwise.
Definition 2.3 ([23]). A function f : X → R defined on a locally Hp-invex set
X ⊂ Rn is said to be locally (Hp, r)-pre-invex on X if, for any x, u ∈ X, there
exists a maximum positive number a(x, u) ≤ 1 such that

f(ln(Hp(x, u;λ))) ≤ ln(Mr(e
f(x), ef(u);λα)),∀ 0 < λ < a(x, u) for p ∈ R,

where the logarithm and the exponentials appearing in the left-hand side of the
inequality are understood to be taken componentwise. If u is fixed, then f is
said to be (Hp, r)-pre-invex at u. Correspondingly, if the direction of above
inequality is changed to the opposite one, then f is said to (Hp, r)-pre-incave on
S or at u.

For convenience, we assume thatX be aHp-invex set,Hp is right differentiable
at 0 with respect to the variable λ for each given pair x, u ∈ X, and f : X → R
is differential on X. The symbol H

′

p(x, u; 0+) , (H
′

p1(x, u; 0+), ...,

H
′

pn(x, u; 0+))T denotes the right derivative of Hp at 0 with respect to the

variable λ for each given pair x, u ∈ X; ∇f(x) , (∇1f(x), ...,∇nf(x))
T denotes

the differential of f at x, and so ∇f(u)
eu denotes (∇1f(u)

eu1
, ..., ∇nf(u)

eun )T .
Definition 2.4 ([10]). Let X be a Hp-invex set, Hp is right differentiable at 0
with respect to the variable λ for each given pair x, u ∈ X, and f : X → R is
differentiable on X. If for all x ∈ X, one of the relations

1

r
erf(x) ≥ 1

r
erf(u)

[
1 + r

∇f(u)T

eu
H

′

p(x, u; 0+)

]
(>) for r ̸= 0,

f(x)− f(u) ≥ ∇f(u)T

eu
H

′

p(x, u; 0+) (>) for r = 0,

hold, then f is said to be (Hp, r)-invex (strictly (Hp, r)-invex) at u ∈ X. If
the above inequalities are satisfied at any point u ∈ X then f is said to be
(Hp, r)-invex (strictly (Hp, r)-invex) on X.
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We now consider the following multiobjective fractional programming prob-
lems:
(FP) Minimize f(x)

g(x) , ( f1(x)g1(x)
, ..., fk(x)

gk(x)
)

subject to
h(x) ≤ 0, (1)

x ∈ X ⊂ Rn,

where f, g : X → Rk and h : X → Rm, f = (f1, f2, ..., fk), g = (g1, g2, ..., gk), h =
(h1, h2, ..., hm), are differentiable functions on a (nonempty) Hp-invex set X.
Without loss of generality, we can assume that fi(x) ≥ 0, gi(x) > 0, i = 1, 2, ..., k
for all x ∈ X. Let X0 = {x ∈ X : h(x) ≤ 0} be the set of all feasible solutions
to (FP).

We denote ϕi(x) =
fi(x)
gi(x)

and ϕ(x) = (ϕ1(x), ϕ2(x), ..., ϕk(x)).

Definition 2.5. A feasible solution x∗ ∈ X0 of (FP) is said to be an efficient
solution of (FP) if there exist no other feasible solution x ∈ X0 such that

fi(x)

gi(x)
≤ fi(x

∗)

gi(x∗)
for all i = 1, 2, ..., k,

and
ft(x)

gt(x)
<

ft(x
∗)

gt(x∗)
for some t ∈ {1, 2, ..., k}.

It is well known (see, for example [17]) that, if x∗ ∈ X0 is an efficient solution
of a multiobjective fractional programming problem (FP), then the following
necessary optimality conditions are satisfied:
Theorem 2.1 (Necessary optimality conditions). Let x∗ ∈ X0 be an efficient
solution to a multiobjective fractional programming problem (FP) and h satis-
fies the constraints qualification [17] at x∗. Then, there exist y∗ ∈ Rk

+, z∗ ∈
Rm, v∗ ∈ Rk such that

k∑
i=1

y∗i [∇fi(x
∗)− v∗i∇gi(x

∗)] +
m∑
j=1

z∗j∇hj(x
∗) = 0, (2)

fi(x
∗)− v∗i gi(x

∗) = 0, for all i = 1, 2, ..., k, (3)

z∗j hj(x
∗) = 0, for all j = 1, 2, ...,m, (4)

hj(x
∗) ≤ 0, for all j = 1, 2, ...,m, (5)

y∗ ∈ Ω, z∗ ∈ Rm
+ , (6)

where Ω = {y ∈ Rk : y = (y1, y2, ..., yk) > 0 and
∑k

i=1 yi = 1}.
The above conditions will be needed in the present analysis.
Remark 2.1 All the theorems in the subsequent parts of this paper will be
proved only in the the case when r ̸= 0. The proofs in other cases are easier
than in this one, since the differences arise only the form of inequality. Moreover,
without loss of generality, we shall assume that r > 0 (in the case when r < 0,
the direction some of the inequalities in the proof of the theorems should be
changed to the opposite one).
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3. Parametric duality

We consider the following parametric dual of (FP) as follows:
(DI) Maximize v = (v1, v2, ..., vk)
subject to

k∑
i=1

yi[∇fi(u)− vi∇gi(u)] +
m∑
j=1

zj∇hj(u) = 0, (7)

fi(u)− vigi(u) ≥ 0, for all i = 1, 2, ..., k, (8)
m∑
j=1

zjhj(u) = 0, (9)

y ∈ Ω, z ≥ 0, v ≥ 0. (10)

Theorem 3.1 (Weak duality). Let x ∈ X0 be a feasible solution for (FP), and
let (u, y, z, v) be a feasible solution for (DI). Moreover, we assume that any one
of the following conditions holds:

(a) S(.) =
∑k

i=1 yi[fi(.)− vigi(.)] +
∑m

j=1 zjhj(.) is (Hp, r)-invex at u,

(b) P (.) =
∑k

i=1 yi[fi(.)−vigi(.)] and Q(.) =
∑k

i=1 zjhj(.) are (Hp, r)-invex
at u.

Then ϕ(x) � v.

Proof. If the condition (a) holds, then (Hp, r)-invexity of S(.) at u, we have

1

r
erS(x) ≥ 1

r
erS(u)

[
1 + r

∇S(u)T

eu
H

′

p(x, u; 0+)

]
.

Using the fundamental property of exponential functions, the above inequality
together with (7), imply that

S(x) ≥ S(u). (11)

Now suppose contrary to the result that ϕ(x) ≼ v. Then

fi(x)

gi(x)
≤ vi for i = 1, 2, ..., k,

and
ft(x)

gt(x)
< vt for some t ∈ {1, 2, ..., k}.

That is,

fi(x)− vigi(x) ≤ 0 ≤ fi(u)− vigi(u) for i = 1, 2, ..., k,

ft(x)− vtgt(x) < 0 ≤ ft(u)− vtgt(u) for some t ∈ {1, 2, ..., k}.
The above inequalities along with (10) give

k∑
i=1

yi[fi(x)− vigi(x)] <

k∑
i=1

yi[fi(u)− vigi(u)]. (12)
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By the feasibility of x and from (9) and (10), we have

m∑
j=1

zjhj(x) ≤
m∑
j=1

zjhj(u). (13)

On adding (12) and (13), we obtain

k∑
i=1

yi[fi(x)− vigi(x)] +
m∑
j=1

zjhj(x) <
k∑

i=1

yi[fi(u)− vigi(u)] +
m∑
j=1

zjhj(u),

i.e.,

S(x) < S(u),

which contradicts (11).
If condition (b) holds, the from the (Hp, r)-invexity of Q(.) at u,

1

r
erQ(x) ≥ 1

r
erQ(u)[1 + r

∇Q(u)T

eu
H

′

p(x, u; 0+)],

equivalently

1

r
[er(Q(x)−Q(u)) − 1] ≥ ∇Q(u)T

eu
Hp

′(x, u; 0+). (14)

From (13) and (14), we get

∇Q(u)

eu

T

H
′

p(x, u; 0+) ≤ 0.

The above inequality together with (7) yields

∇P (u)T

eu
H

′

p(x, u; 0+) ≥ 0. (15)

From the (Hp, r)-invexity of P (.) at u, we have

1

r
erP (x) ≥ 1

r
erP (u)[1 + r

∇P (u)T

eu
H

′

p(x, u, 0+)]. (16)

The inequalities (15) and (16), and the fundamental property of exponential
functions imply that

P (x) ≥ P (u).

That is,
k∑

i=1

yi[fi(x)− vigi(x)] ≥
k∑

i=1

yi[fi(u)− vigi(u)]. (17)

Again if ϕ(x) ≼ v, then we get (12) in the same way. But (12) contradicts (17).
Therefore, ϕ(x) � v. This completes the proof. �

Theorem 3.2 (Strong duality). Let x∗ be an efficient solution for (FP) and let h
satisfy the constraints qualification [17] at x∗. Then there exist y∗ ∈ Ω, z∗ ∈ Rm

and v∗ ∈ Rk such that (x∗, y∗, z∗, v∗) is feasible for (DI).
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Also, if the weak duality theorem 3.1 holds for all feasible solutions of the
problems (FP) and (DI), then (x∗, y∗, z∗, v∗) is an efficient solution for (DI)
and the two objectives are equal at these points.

Proof. Since x∗ is an efficient solution for (FP) and h satisfy the constraints qual-
ification at x∗, there exist y∗ ∈ Ω, z∗ ∈ Rm and v∗ ∈ Rk such that (x∗, y∗, z∗, v∗)
satisfies (2)-(6). This, in turn, imply that (x∗, y∗, z∗, v∗) is feasible for (DI).
From the weak duality theorem, for any feasible points (x, y, z, v) to (DI), the
inequality ϕ(x∗) ≽ v holds. Hence we conclude that (x∗, y∗, z∗, v∗) is an efficient
solution to (DI) and the objective functions of (FP) and (DI) are equal at these
points. This completes the proof. �

Theorem 3.3 (Strict converse duality). Assume that x∗ and (u∗, y∗, z∗, v∗) be

an efficient solution for (FP) and (DI), respectively with v∗i = fi(x
∗)

gi(x∗) for all i =

1, 2, ..., k. Assume that

A(.) =

k∑
i=1

y∗i [fi(.)− v∗i gi(.)] +

m∑
j=1

z∗j hj(.)

is strictly (Hp, r)-invex at u∗. Then x∗ = u∗; that is, u∗ is an efficient solution
for (FP).

Proof. Suppose on the contrary that x∗ ̸= u∗. From (8), (9) and (10), we get

A(u∗) =

k∑
i=1

y∗i [fi(u
∗)− v∗i gi(u

∗)] +

m∑
j=1

z∗j hj(u
∗) ≥ 0. (18)

From the strictly (Hp, r)-invexity of A(.), we have

1

r
[er(A(x∗)−A(u∗)) − 1] > r

∇A(u∗)T

eu∗ Hp
′(x∗, u∗; 0+).

Using the fundamental property of exponential functions, the above inequality
together with (7), imply that

A(x∗) > A(u∗). (19)

Since

v∗i =
fi(x

∗)

gi(x∗)
for all i = 1, 2, ..., k,

i.e.,

fi(x
∗)− v∗i gi(x

∗) = 0 for all i = 1, 2, ..., k. (20)

By the feasibility of x∗ and (10), we have

m∑
j=1

z∗jh(x
∗) ≤ 0. (21)
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Therefore, from (10), (20) and (21), we conclude that

A(x∗) =
k∑

i=1

y∗i [fi(x
∗)− v∗i gi(x

∗)] +
m∑
j=1

z∗j hj(x
∗) ≤ 0. (22)

Hence from (19) and (22), we have A(u∗) < 0 which contradicts (18). Hence
x∗ = u∗. This completes the proof. �

Remark 3.1 The function A(.) in Theorem 3.3 is expressed by the sum of the

modified objective part B(.) =
∑k

i=1 y
∗
i [fi(.)−v∗i gi(.)] of (FP) and its constraint

part C(.) =
∑m

j=1 z
∗
j hj(.). If B(.) is strictly (Hp, r)-invex and C(.) is (Hp, r)-

invex then the Theorem 3.3 is still holds.

4. Parameter free duality

In this section, we take the following form of theorem 2.1:
Theorem 4.1 Let x∗ be an efficient solution to (FP). Assume that h satisfies
the constraints qualification at x∗. Then there exist y∗ ∈ Rk

+, z
∗ ∈ Rm, such that

k∑
i=1

y∗i gi(x
∗)[∇fi(x

∗) +
m∑

j=1

z∗j∇hj(x
∗)] +

k∑
i=1

y∗i (−∇gi(x
∗))[fi(x

∗) +
m∑

j=1

z∗j hj(x
∗)] = 0, (23)

z∗j hj(x
∗) = 0, for all j = 1, 2, ...,m, (24)

hj(x
∗) ≤ 0, for all j = 1, 2, ...,m, (25)

y∗ ∈ Ω, z∗ ≥ 0. (26)

Now we consider the following parameter free dual problem to (FP):

(DII) Maximize
(

f1(u)+
∑m

j=1 zjhj(u)

g1(u)
, ...,

fk(u)+
∑m

j=1 zjhj(u)

gk(u)

)
subject to

k∑
i=1

yigi(u)[∇fi(u) +
m∑

j=1

zj∇hj(u)] +
k∑

i=1

yi[fi(u) +
m∑

j=1

zjhj(u)](−∇gi(u)) = 0, (27)

y ∈ Ω, z ≥ 0. (28)

Denote Ψi(u, z) =
fi(u)+

∑m
j=1 zjhj(u)

gi(u)
and Ψ(u, z) = (Ψ1(u, z),Ψ2(u, z), ...,Ψk(u, z)).

Throughout this section, we assume fi(u) +
∑m

j=1 zjhj(u) ≥ 0 and gi(u) >
0, for all i = 1, 2, ..., k.
Theorem 4.2 (Weak duality). Let x ∈ X0 be a feasible solution for (FP) and
let (u, y, z) be a feasible solution for (DII). Assume that

Θ(.) =
k∑

i=1

yigi(u)[fi(.) +
m∑
j=1

zjhj(.)]−
k∑

i=1

yigi(.)[fi(u) +
m∑
j=1

zjhj(u)]

is (Hp, r)-invex at u . Then ϕ(x) � Ψ(u, z).
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Proof. From (Hp, r)-invexity of Θ(.) at u, we have

1

r
erΘ(x) ≥ 1

r
erΘ(u)[1 + r

∇Θ(u)T

eu
H

′

p(x, u; 0+)]

Using the fundamental property of exponential functions, the above inequality
together with (27), imply that

Θ(x) ≥ Θ(u) = 0,

i.e,
Θ(x) ≥ 0. (29)

Suppose contrary to the result that ϕ(x) ≼ Ψ(u, z). Then

fi(x)

gi(x)
≤

fi(u) +
∑m

j=1 zjhj(u)

gi(u)
for i = 1, 2, ..., k,

ft(x)

gt(x)
<

ft(u) +
∑m

j=1 zjhj(u)

gt(u)
for some t ∈ {1, 2, ..., k}.

It follows that
k∑

i=1

yi[fi(x)gi(u)] <

k∑
i=1

yigi(x)[fi(u) +

m∑
j=1

zjhj(u)],

equivalently,∑k
i=1 yi[fi(x) +

∑m
j=1 zjhj(x)]gi(u)−

∑k
i=1 yigi(x)[fi(u) +

∑m
j=1 zjhj(u)]

<
k∑

i=1

yigi(u)
m∑
j=1

zjhj(x). (30)

From the feasibility of x, gi(u) > 0 and (28), we have

k∑
i=1

yigi(u)
m∑
j=1

zjhj(x) ≤ 0.

Therefore (30), implies

k∑
i=1

yigi(u)[fi(x) +

m∑
j=1

zjhj(x)]−
k∑

i=1

yigi(x)[fi(u) +

m∑
j=1

zjhj(u)] < 0,

i.e,
Θ(x) < 0,

which contradicts (29). This completes the proof. �
Theorem 4.3 (Strong duality). Let x∗ be an efficient solution for (FP) and let
h satisfy the constraints qualification [17] at x∗. Then there exist y∗ ∈ Ω and
z∗ ∈ Rm such that (x∗, y∗, z∗) is feasible to (DII).

Also, If the weak duality theorem 5.2 holds for all feasible solutions of the
problem (FP) and (DII), then (x∗, y∗, z∗) is an efficient solution for (DII) and
the two objectives are equal at these points.



108 Anurag Jayswal, I. Ahmad and Ashish Kumar Prasad

Proof. Since x∗ is an efficient solution for (FP) and h satisfy the constraints
qualification at x∗, there exist y∗ ∈ Ω and z∗ ∈ Rm such that (x∗, y∗, z∗) satisfies
(23)-(26). This, in turn, imply that (x∗, y∗, z∗) is feasible for (DII). From the
weak duality theorem 4.2, for any feasible points (x, y, z) to (DII)), the inequality
ϕ(x∗) ≼ Ψ(x, z) holds. Hence we conclude that (x∗, y∗, z∗) is an efficient solution
to (DII) and the objective functions of (FP) and (DII) are equal at these points.
This completes the proof. �

Theorem 4.4 (Strict converse duality). Assume that x∗ and (u∗, y∗, z∗) be an
efficient solution for (FP) and (DII), respectively. Assume that

U(.) =
k∑

i=1

y∗i gi(u
∗)[fi(.) +

m∑
j=1

z∗j hj(.)]

−
k∑

i=1

y∗i gi(.)[fi(u
∗) +

m∑
j=1

z∗j hj(u
∗)]

is strictly (Hp, r)-invex at u∗ Then x∗ = u∗; that is, u∗ is an efficient solution
for (FP).

Proof. Suppose on the contrary that x∗ ̸= u∗. From Theorem 4.3, we know that
there exist ȳ and z̄ such that (x∗, ȳ, z̄) is an efficient solution for (DII) and

fi(x
∗) +

∑m
j=1 z

∗
j hj(x

∗)

gi(x∗)
=

fi(u
∗) +

∑m
j=1 z

∗
j hj(u

∗)

gi(u∗)
. (31)

By (24), (26) and (31), we obtain

fi(x
∗)

gi(x∗)
=

fi(u
∗) +

∑m
j=1 z

∗
j hj(u

∗)

gi(u∗)
. (32)

Hence

fi(x
∗)gi(u

∗) = [fi(u
∗) +

m∑
j=1

z∗j hj(u
∗)]gi(x

∗). (33)

From (28) and (33), we have

U(x∗) =

k∑
i=1

y∗i gi(u
∗)

m∑
j=1

z∗j hj(x
∗).

By the feasibility of x∗, gi(u
∗) > 0, from (28) and the above inequality, we have

U(x∗) ≤ 0.

Therefore,

U(x∗) ≤ 0 = U(u∗).

That is,

U(x∗) ≤ U(u∗). (34)
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On the other hand, from strictly (Hp, r)-invexity of U(.) at u∗, we have

1

r
erU(x∗) >

1

r
erU(u∗)[1 + r

∇U(u∗)T

eu
H

′

p(x
∗, u∗; 0+)].

The above inequality together with (27) and the fundamental property of the
exponential functions yields

U(x∗) > U(u∗),

which contradicts inequality (34). Hence x∗ = u∗; that is, u∗ is an efficient
solution for (FP). This completes the proof. �

5. Mond-Weir duality

In this section, we consider the following Mond-Weir dual to (FP):

(DIII) Maximize ( f1(u)g1(u)
, ..., fk(u)

gk(u)
)

subject to

k∑
i=1

yigi(u)[∇fi(u) +

m∑
j=1

zj∇hj(u)] +

k∑
i=1

yi(−∇gi(u))[fi(u) +

m∑
j=1

zjhj(u)] = 0,

(35)
m∑
j=1

zjhj(u) ≥ 0, (36)

y > 0, z ≥ 0. (37)

Denote Φi(u) =
fi(u)
gi(u)

and Φ(u) = (Φ1(u),Φ2(u), ...,Φk(u)).

Now we shall state weak, strong and strict converse duality theorems without
proof as they can be proved in light of the Theorem 4.2, Theorem 4.3 and
Theorem 4.4, proved in previous section.
Theorem 5.1 (Weak duality). Let x ∈ X0 be a feasible solution for (FP) and
let (u, y, z) be a feasible solution for (DIII). Assume that

k∑
i=1

yigi(u)[fi(.) +
m∑
j=1

zjhj(.)]−
k∑

i=1

yigi(.)[fi(u) +
m∑
j=1

zjhj(u)].

is (Hp, r)-invex at u . Then

ϕ(x) � Φ(u).

Theorem 5.2 (Strong duality). Let x∗ be an efficient solution for (FP) and let
h satisfy the constraints qualification [17] at x∗. Then there exist y∗ ∈ I and
z∗ ∈ Rm such that (x∗, y∗, z∗) is feasible to (DIII).

Also, If the weak duality theorem 5.1 holds for all feasible solutions of the
problem (FP) and (DIII), then (x∗, y∗, z∗) is an efficient solution for (DIII)
and the two objectives are equal at these points. Theorem 5.3 (Strict converse
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duality). Assume that x∗ and (u∗, y∗, z∗) be an efficient solution for (FP) and
(DIII), respectively. Assume that

k∑
i=1

y∗i gi(u
∗)[fi(.) +

m∑
j=1

z∗jhj(.)]

−
k∑

i=1

y∗i gi(.)[fi(u
∗) +

m∑
j=1

z∗j hj(u
∗)]

is strictly (Hp, r)-invex at u∗ . Then x∗ = u∗; that is, u∗ is an efficient solution
for (FP).

6. Conclusion

In this paper, we have used the concept of (Hp, r)-invex functions to estab-
lished duality results for three type of dual models related to multiobjective
fractional programming problem. The question arise whether optimality and
duality theorems established in this paper also holds under the assumption of
(Hp, r)-invexity for a class of minimax fractional programming problem consid-
ered in [1].
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