
J. Appl. Math. & Informatics Vol. 32(2014), No. 1 - 2, pp. 7 - 16
http://dx.doi.org/10.14317/jami.2014.007

QUOTIENT MOMENTS OF THE ERLANG-TRUNCATED

EXPONENTIAL DISTRIBUTION BASED ON RECORD

VALUES AND A CHARACTERIZATION

DEVENDRA KUMAR

Abstract. Erlang-truncated exponential distribution is widely used in the
field of queuing system and stochastic processes. This family of distribu-
tion include exponential distribution. In this paper we establish some exact
expression and recurrence relations satisfied by the quotient moments and

conditional quotient moments of the upper record values from the Erlang-
truncated exponential distribution. Further a characterization of this dis-
tribution based on recurrence relations of quotient moments of record values
is presented.
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1. Introduction

A random variableX is said to have Erlang-truncated exponential distribution
if its probability density function (pdf) is of the form

f(x) = β(1− e−λ)e−βx(1−e−λ), x ≥ 0, β, λ > 0 (1.1)

and the corresponding survival function is

F̄ (x) = e−βx(1−e−λ). (1.2)

Therefore, in view of (1.1) and (1.2), we have

f(x) = β(1− e−λ)F̄ (x). (1.3)

The relation in (1.3) will be used to derive some recurrence relations for the
quotient moments of record values from the Erlang-truncated exponential dis-
tribution. More details on this distribution can be found in Ei-Alosey [1].
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Record values are found in many situations of daily life as well as in many sta-
tistical applications. Often we are interested in observing new records and in
recording them: for example, Olympic records or world records in sport. Record
values are used in reliability theory. Moreover, these statistics are closely con-
nected with the occurrences times of some corresponding non homogeneous Pois-
son process used in shock models. The statistical study of record values started
with Chandler [9], he formulated the theory of record values as a model for
successive extremes in a sequence of independently and identically random vari-
ables. Feller [23] gave some examples of record values with respect to gambling
problems. Resnick [17] discussed the asymptotic theory of records. Theory of
record values and its distributional properties have been extensively studied in
the literature, for example, see, Ahsanullah [10], Arnold et al. [2],[3], Nevzorov
[21] and Kamps [19] for reviews on various developments in the area of records.
We shall now consider the situations in which the record values (e.g. successive
largest insurance claims in non-life insurance, highest water-levels or highest
temperatures) themselves are viewed as ”outliers” and hence the second or third
largest values are of special interest. Insurance claims in some non life insurance
can be used as one of the examples. Observing successive k largest values in
a sequence, Dziubdziela and Kopocinski [22] proposed the following model of k
record values, where k is some positive integer.
Let {Xn, n ≥ 1} be a sequence of identically independently distributed (i.i.d)
random variables with pdf f(x) and distribution function (df) F (x). The j−th
order statistics of a sample (X1, X2, . . . , Xn) is denoted by Xj:n. For a fix k ≥ 1

we define the sequence {U (k)
n , n ≥ 1} of k upper record times of {Xn, n ≥ 1} as

follows

U
(k)
1 = 1,

U
(k)
n+1 = min{j > U (k)

n : Xj : j + k + 1 > X
U

(k)
n :U

(k)
n +k−1

}.

The sequence {Y (k)
n , n ≥ 1} with Y

(k)
n = X

U
(k)
n :U

(k)
n +k−1

, n = 1, 2, . . . are called

the sequences of k upper record values of {Xn, n ≥ 1}.
For k = 1 and n = 1, 2, . . . we write U

(1)
1 = Un. Then {Un, n ≥ 1} is

the sequence of record times of {Xn, n ≥ 1}. The sequence {Y (k)
n , n ≥ 1},

where Y
(k)
n = X

U
(k)
n

is called the sequence of k upper record values of {Xn, n ≥
1}. For convenience, we shall also take Y

(k)
0 = 0. Note that k = 1 we have

Y
(1)
n = XUn , n ≥ 1, which are record value of {Xn, n ≥ 1}. Moreover Y

(k)
1 =

min{X1, X2, . . . , Xk = X1:k}.
Let {X(k)

n , n ≥ 1} be the sequence of k upper record values then the pdf of

X
(k)
n , n ≥ 1 is given by

f
X

(k)
n

(x) =
kn

(n− 1)!
[−ln(F̄ (x))]n−1[F̄ (x)]k−1f(x) (1.4)
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and the joint pdf of X
(k)
m and X

(k)
n , 1 ≤ m < n, n > 2 is given by

f
X

(k)
m ,X

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!
[−ln(F̄ (x))]m−1

×[−lnF̄ (y) + lnF̄ (x)]n−m−1[F̄ (y)]k−1 f(x)

F̄ (x)
f(y), x < y. (1.5)

where F̄ (x) = 1− F (x) .
Recurrence relations for single and product moments of record values from

Weibull, Pareto, generalized Pareto, Burr, exponential and Gumble distribution
are derived by Pawalas and Szynal [14], [15] and [16]. Kumar [4], Kumar and
Khan [6] are established recurrence relations for moments of record values from
exponentiated log-logistic and generalized beta II distributions respectively. And
similar results for this paper have been done by Lee and Chang [11], [13] and
[13], Chang [18] and Kumar [5] for exponential distribution, Pareto distribu-
tion, power function distribution, Weibull distribution and generalized Pareto
distribution respectively. Kamps [20] investigated the importance of recurrence
relations of order statistics in characterization.

In this paper, we established some explicit expressions and recurrence rela-
tions satisfied by the quotient moments and conditional quotient moments of
the upper record values from the Erlang-truncated exponential distribution. A
characterization of this distribution based on recurrence relations of quotient
moments of record values.

2. Relations for the quotient moment

Theorem 2.1. For the Erlang-truncated exponential distribution as given in
(1.1) and 1 ≤ m ≤ n− 2, k = 1, 2, . . . , s = 1, 2, . . .

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
=

1

(m− 1)!(n−m− 1)!

n−m−1∑
u=0

n−m−s−u−2∑
v=0

(−1)u

×
(

n−m− 1
u

)
Γ(n−m− u− s− 1)Γ(r + u+ v +m)

v![βk(1− e−λ)]r−s−1
. (2.1)

Proof. From (1.5), we have

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
=

kn

(m− 1)!(n−m− 1)!

×
∫ ∞

0

xr[−ln(F̄ (x))]m−1 f(x)

[F̄ (x)]
G(x)dx, (2.2)

where

G(x) =

∫ ∞

x

y−(s+1)[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (x)]k−1f(y)dy. (2.3)
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On using the equations (1.2) and (1.3) in equation (2.3), we get

G(x) = [β(1− e−λ)]n−m
n−m−1∑

v=0

(−1)u
(

n−m− 1
u

)
xu

×
∫ ∞

x

yn−m−u−s−2e−βk(1−e−λ)ydy

= [β(1− e−λ)]n−m
n−m−1∑

v=0

n−m−s−u−2∑
v=0

(−1)u
(

n−m− 1
u

)

×xu+veβk(1−e−λ)xΓ(n−m− u− s− 1)

v![βk(1− e−λ)]n−m−s−u−v−1

(Gradshteyn and Ryzhik, [7], p-346). Upon substituting this expression for G(x)
in (2.2) and then integrating the resulting expression, we establish the result
given in (2.1). �

Theorem 2.2. For the Erlang-truncated exponential distribution as given in
(1.1) and 1 ≤ m ≤ n− 2, k = 1, 2, . . .

E
( (X(k)

U(m))
r+1

(X
(k)
U(n))

s

)
=

1

(m− 1)!(n−m− 1)!

n−m−1∑
u=0

n−m−s−u−2∑
v=0

(−1)u

×
(

n−m− 1
u

)
Γ(n−m− u− s)Γ(r + u+ v +m+ 1)

v![βk(1− e−λ)]r−s+v+1
. (2.4)

Proof. Proof can be established on line of Theorem 2.1. �

Remark 2.1. Setting k = 1 in (2.1) and (2.4) we deduce the explicit expression
for the quotient moments of record values from the Erlang-truncated exponential
distribution.

Making use of (1.3), we can derive recurrence relations for the quotient mo-
ments of k upper record values.

Theorem 2.3. For 1 ≤ m ≤ n−2, k = 1, 2, . . . , r = 0, 1, 2, . . ., and s = 1, 2, . . .

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
= E

( (X
(k)
U(m))

r

(X
(k)
U(n−1))

s+1

)
− s+ 1

βk(1− e−λ)
E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+2

)
. (2.5)

Proof. From equation (1.5) 1 ≤ m ≤ n− 1, r = 0, 1, 2, . . ., and s = 1, 2, . . .

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
=

kn

(m− 1)!(n−m− 1)!

×
∫ ∞

0

xr[−ln(F̄ (x))]m−1 f(x)

[F̄ (x)]
I1(x)dx, (2.6)
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where

I1(x) =

∫ ∞

x

y−(s+1)[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (x)]k−1f(y)dy.

Integrating I1(x) by parts treating [F̄ (x)]k−1f(y) for integration and the rest
of the integrand for differentiation, and substituting the resulting expression in
(2.6), we get

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
−E

( (X
(k)
U(m))

r

(X
(k)
U(n−1))

s+1

)
= − (s+ 1)kn

k(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+2

×[−ln(F̄ (x))]m−1[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k
f(x)

F̄ (x)
dydx

the constant of integration vanishes since the integral in I1(x) is a definite inte-
gral. On using the relation (1.3), we obtain

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
− E

( (X
(k)
U(m))

r

(X
(k)
U(n−1))

s+1

)
= − (s+ 1)kn

[βk(1− e−λ)](m− 1)!(n−m− 1)!

×
∫ ∞

0

∫ ∞

x

xr

ys+1
[−ln(F̄ (x))]m−1[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1

×[F̄ (y)]k−1 f(x)

F̄ (x)
f(y)dydx

and hence the result given in (2.5). �
Theorem 2.4. For 1 ≤ m ≤ n− 2, r, s =, 1, 2, . . .,

E
( (X(k)

U(m))
r+1

(X
(k)
U(n))

s

)
= E

( (X(k)
U(m))

r+1

(X
(k)
U(n−1))

s

)
− s

βk(1− e−λ)
E
( (X(k)

U(m))
r+1

(X
(k)
U(n))

s+1

)
. (2.7)

Proof. Proof follows on the line of Theorem 2.3. �
Corollary 2.5. For m ≥ 1, r = 0, 1, 2, . . . and s = 1, 2, . . .

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
= E[(X

(k)
U(m))

r−s−1]− s+ 1

βk(1− e−λ)
E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+2

)
. (2.8)

Proof. Upon substituting n = m + 1 in (2.5) and simplifying, then we get the
result given in (2.8). �
Corollary 2.6. For m ≥ 1, r, s = 0, 1, 2, . . . ,

E
( (X(k)

U(m))
r+1

(X
(k)
U(n))

s

)
= E[(X

(k)
U(m))

r−s+1]− s

βk(1− e−λ)
E
( (X(k)

U(m))
r+1

(X
(k)
U(n))

s+1

)
. (2.9)

Proof. Upon substituting n = m + 1 in (2.7) and simplifying, then we get the
result given in (2.9). �
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Remark 2.2. Setting k = 1 in (2.5) and (2.7) we deduce the recurrence relation
for the quotient moments of record values from the Erlang-truncated exponential
distribution.

3. Relation of quotient conditional expectation

Let {X(k)
n , n ≥ 1} be a sequence of i.i.d continuous random variables with df

F (x) and pdf f(x). Let XU(m) and XU(n) be the m−th and n−th upper record
values, then the conditional pdf of XU(m) given XU(n) = y, 1 ≤ m < n in view
of (1.4) and (1.5), is

fm|n(x|y) =
(n− 1)!

(m− 1)!(n−m− 1)!
[−ln(F̄ (x))]m−1[−lnF̄ (y) + lnF̄ (x)]n−m−1

× f(x)

F̄ (x)[−ln(F̄ (y))]n−1
, x < y (3.1)

and the conditional pdf of XU(n) give XU(m) = x, 1 ≤ m < n is

fn|m(y|x) = 1

(n−m− 1)!
[−lnF̄ (y) + lnF̄ (x)]n−m−1 f(y)

F̄ (x)
, x > y. (3.2)

Theorem 3.1. For the Erlang-truncated exponential distribution as given in
(1.1) and 1 ≤ m ≤ n− 2, k = 1, 2, . . . ,

E
(X(r)

U(m)

X
(s)
U(n)

|XU(m) = x
)
=

1

(n−m− 1)!

n−m−1∑
u=0

n−m−s−u−1∑
v=0

(−1)u

×
(

n−m− 1
u

)
xr+u+vΓ(n−m− s− u)

v![β(1− e−λ)]−(s+u+v)
. (3.3)

Proof. From (3.2), we have

E
(X(r)

U(m)

X
(s)
U(n)

|XU(m) = x
)
=

xr

F̄ (x)(n−m− 1)!

×
∫ ∞

x

y−s[−lnF̄ (y) + lnF̄ (x)]n−m−1f(y)dy.

On using the (1.2) and (1.3), we have

E
(X(r)

U(m)

X
(s)
U(n)

|XU(m) = x
)
=

xr[β(1− e−λ)]n−m

F̄ (x)(n−m− 1)!

n−m−1∑
u=0

(−1)u
(

n−m− 1
u

)
xu

×
∫ ∞

x

yn−m−s−u−1e−β(1−e−λ)ydy (3.4)

integrating the equation (3.4), we established the result given in (3.3). �
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Theorem 3.2. For the Erlang-truncated exponential distribution as given in
(1.1) and 1 ≤ m ≤ n− 2, k = 1, 2, . . . ,

E
(X(r)

U(m)

X
(s)
U(n)

|XU(n) = y
)
=

[β(1− e−λ)]n−2(n− 1)!

(m− 1)!(n−m− 1)!

n−m−1∑
u=0

(−1)u

×
(

n−m− 1
u

)
yn−s+r−2

(r +m+ p)
. (3.5)

Proof. Proof follows on the line of Theorem 3.1. �

Making use of (1.3), we can derive recurrence relations for the quotient con-
ditional moments of upper record values.

Theorem 3.3. For 1 ≤ m ≤ n− 2, r = 0, 1, 2, . . . and s = 1, 2, . . .( s+ 1

β(1− e−λ)

)
E
(X(r)

U(m)

X
(s)
U(n)

|XU(m) = x
)

= E
( X

(r)
U(m)

X
(s+1)
U(n−1)

|XU(m) = x
)
− E

(X
(r)
U(m)

X
(s+1)
U(n)

|XU(m) = x
)
. (3.6)

Proof. From equation (3.1), we have

E
(X(r)

U(m)

X
(s)
U(n)

|XU(m) = x
)
=

xr

F̄ (x)(n−m− 1)!
I2(x) (3.7)

where

I2(x) =

∫ ∞

x

y−s[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1f(y)dy.

= β(1− e−λ)

∫ ∞

x

y−s[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1F̄ (y)dy

Integrating I2(x) by parts treating y−s for integration and the rest of the inte-
grand for differentiation, and substituting the resulting expression in (3.7), we
get the result given in (3.6). �

Theorem 3.4. For 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . .( r + 1

β(1− e−λ)

)
E
( X

(r)
U(m)

X
(s)
U(m+1)

|XU(n) = y
)

= E
( X

(r+1)
U(m)

X
(s)
U(n−1)

|XU(n) = y
)
− E

(X(r+1)
U(m−1)

X
(s)
U(m−1)

|XU(n) = y
)
. (3.8)

Proof. Proof follows on the line of Theorem 3.3. �
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Corollary 3.5. For m ≥ 1, r = 0, 1, 2, . . . and s = 1, 2, . . .( s+ 1

β(1− e−λ)

)
E
( X

(r)
U(m)

X
(s)
U(m+1)

|XU(m) = x
)

= E[X
(r−s−1)
U(m) |XU(m)]− E

( X
(r)
U(m)

X
(s+1)
U(m+1)

|XU(m) = x
)
. (3.9)

Proof. Upon substituting n = m + 1 in (3.6) and simplifying, then we get the
result given in (3.9). �
Corollary 3.6. For 1 ≤ m ≤ n− 2, r, s = 0, 1, 2, . . .( r + 1

β(1− e−λ)

)
E
( X

(r)
U(m)

X
(s)
U(m+1)

|XU(m+1) = y
)

= E[Xr−s+1
U(m) |XU(m+1) = y]− E

(X(r+1)
U(m−1)

X
(s)
U(m)

|XU(m+1) = y
)
. (3.10)

Proof. Upon substituting n = m + 1 in (3.8) and simplifying, then we get the
result given in (3.10). �

4. Characterization

Theorem 4.1. Let k ≥ 1 is a fix positive integer, r be a non- negative integer
and y be an absolutely continuous random variable with pdf f(y) and df F (y)
on the support (0,∞), then

E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+1

)
= E

( (X
(k)
U(m))

r

(X
(k)
U(n−1))

s+1

)
− s+ 1

βk(1− e−λ)
E
( (X

(k)
U(m))

r

(X
(k)
U(n))

s+2

)
. (4.1)

if and only if

F̄ (y) = e−βy(1−e−λ), y ≥ 0, β, λ > 0.

Proof. The necessary part follows immediately from equation (2.5). On the
other hand if the recurrence relation in equation (4.1) is satisfied, then on using
equation (1.5), we have

kn

(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+1
[−ln(F̄ (x))]m−1[−ln(F̄ (y))+ln(F̄ (x))]n−m−1

×[F̄ (y)]k−1 f(x)

F̄ (x)
f(y)dydx

=
kn(n−m− 1)

k(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+1
[−ln(F̄ (x))]m−1[−ln(F̄ (y)) + ln(F̄ (x))]n−m−2

×[F̄ (y)]k−1 f(x)

F̄ (x)
f(y)dydx
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− (s+ 1)kn

[βk(1− e−λ)](m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+2
[−ln(F̄ (x))]m−1

×[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k−1 f(x)

F̄ (x)
f(y)dydx. (4.2)

Integrating the first integral on the right hand side of equation (4.2) by parts
and simplifying the resulting expression, we find that

(s+ 1)kn

k(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+2
[−ln(F̄ (x))]m−1[−ln(F̄ (y)) + ln(F̄ (x))]n−m−1

×[F̄ (y)]k−1 f(x)

F̄ (x)

{
F̄ (y)− 1

β(1− e−λ)
f(y)

}
dydx = 0. (4.3)

Now applying a generalization of the Müntz-Szász Theorem (Hwang and Lin,
[8]) to equation (4.3), we get

f(y)

F̄ (y)
= β(1− e−λ)

which proves that

F̄ (y) = e−βy(1−e−λ), y ≥ 0, β, λ > 0.

�

5. Conclusion

In this study some exact expressions and recurrence relations for the quotient
moments and conditional quotient moments of record values from the Erlang-
truncated exponential distribution have been established. Further, recurrence
relation of the quotient moments of record values has been utilized to obtain a
characterization of the Erlang-truncated exponential distribution.
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