DOI QR코드

DOI QR Code

Thermal Melt Grafting of Maleimides Having UV-absorber onto Polypropylene

폴리프로필렌에 UV 흡수제를 갖는 말레이미드의 용융그래프팅

  • Kim, Taek Hyeon (School of Applied Chemical Engineering, College of Engineering, Chonnam National University) ;
  • Na, Hye-Sun (School of Applied Chemical Engineering, College of Engineering, Chonnam National University)
  • 김택현 (전남대학교 공과대학 응용화학공학부) ;
  • 나혜선 (전남대학교 공과대학 응용화학공학부)
  • Received : 2013.08.07
  • Accepted : 2013.09.17
  • Published : 2014.01.25

Abstract

A novel monomeric UV-absorber was prepared by the reaction of 2,4-dihydroxybenzophenone with N-4-chlorocarbonylphenylmaleimide in the presence of triethylamine. This reactive maleimide was grafted onto polypropylene (PP) by the thermal melt-processing in a mini-max-moulder. IR spectroscopic method was used for the quantitative determination of the extent of grafting of monomeric maleimide. To find the optimal reaction conditions, the dependence of reaction temperature and time and the concentration of monomeric UV-absorber was investigated on the grafting yields. The photooxidative effect of the grafted PP was evaluated in the weatherometer comparing to the PP mixed with UV-absorbers using the carbonyl index of IR spectrum. The grafted PP showed an excellent anti-photooxidative effect.

새로운 단량체형의 자외선흡수제를 triethylamine에서 2,4-dihydroxybenzophenone과 N-4-chlorocarbonyl-phenylmaleimide의 반응을 통하여 합성하였다. 이 자외선흡수제를 폴리프로필렌에 용융반응에 의해 그래프팅하였다. Maleimide의 그래프팅 수율은 IR 분광 데이터를 이용하여 결정하였다. 용융반응의 최적조건을 구하기 위하여 반응온도 및 시간, 단량체의 농도의 변화에 대하여 그래프팅 수율을 구하였다. Weatherometer에서 IR 스펙트럼의 카보닐 지수를 이용하여 그래프트된 폴리프로필렌의 광산화 정도를 조사하였으며, 우수한 광산화 억제작용을 보였다.

Keywords

References

  1. J. T. Lutz, Jr., Thermoplastic Polymer Additives; Theory and Practice, Marcel Dekker, New York, 1989.
  2. F. Gugumus, Plastics Additives, 3rd Ed., Oxford Univ. Press, New York, 1990.
  3. D. Munteanu, Developments in Polymer Stabilization-8, G. Scott, Editor, Applied Science Publishers, London, 1987.
  4. J. Pospisil, Angew. Makromol. Chem., 158/159, 221 (1988).
  5. J. A. Kuczkowski and J. G. Gillick, Rubber Chem. Technol., 57, 621 (1984). https://doi.org/10.5254/1.3536022
  6. Y. N. Sharma, M. K. Naqvi, P. S. Gawande, and I. S. Bhardwaj, J. Appl. Polym. Sci., 27, 2605 (1982). https://doi.org/10.1002/app.1982.070270729
  7. D. Munteanu and C. Csunderlik, Polym. Deg. Stab., 34, 295 (1991). https://doi.org/10.1016/0141-3910(91)90124-A
  8. S. Al-Malaika and N. Suharty, Polym. Deg. Stab., 49, 77 (1995). https://doi.org/10.1016/0141-3910(95)00114-2
  9. T. H. Kim, H.-K. Kim, D. R. Oh, M. S. Lee, K. H. Chae, and S. Y. Kaang, J. Appl. Polym. Sci., 77, 2958 (2000).
  10. T. H. Kim and N. Lee, Bull. Kor. Chem. Soc., 24, 1809 (2003). https://doi.org/10.5012/bkcs.2003.24.12.1809
  11. T. H. Kim, J. Appl. Polym. Sci., 94, 2117 (2004). https://doi.org/10.1002/app.21003
  12. T. H. Kim and D. R. Oh, Polym. Deg. Stab., 84, 499 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.01.008
  13. T. Oishi and M. Fujimoto, J. Polym. Sci. Part A: Polym. Chem., 30, 1821 (1992). https://doi.org/10.1002/pola.1992.080300905
  14. T. Vainio, G.-H. Hu, M. Lambla, and J. V. Seppala, J. Appl. Polym. Sci., 61, 843 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960801)61:5<843::AID-APP17>3.0.CO;2-Y
  15. M. S. Rabello and J. R. White, Polym. Deg. Stab., 56, 55 (1997). https://doi.org/10.1016/S0141-3910(96)00202-9
  16. Z. Song and W. E. Baker, Angew. Makromol. Chem., 181, 1 (1990). https://doi.org/10.1002/apmc.1990.051810101