DOI QR코드

DOI QR Code

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A. (Mechanical Engineering Department, Babol University of Technology) ;
  • Alashti, R. Akbari (Mechanical Engineering Department, Babol University of Technology) ;
  • Pashaei, M.H. (Mechanical Engineering Department, Babol University of Technology)
  • Received : 2012.11.25
  • Accepted : 2013.09.18
  • Published : 2014.01.25

Abstract

In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.

Keywords

References

  1. Aghdam, M.M., Shahmansouri, N. and Bigdeli, K. (2011), "Bending analysis of moderately thick functionally graded conical panels", Compos. Struct., 93(5), 1376-1384. https://doi.org/10.1016/j.compstruct.2010.10.020
  2. Alibeigloo, A. and Nouri, V. (2010), "Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method", Compos. Struct., 92(8), 1775-1785. https://doi.org/10.1016/j.compstruct.2010.02.004
  3. Chandrashekhara, K. and Kumar, B.S. (1993), "Static analysis of a thick laminated circular cylindrical shell subjected to axisymmetric load", Compos. Struct., 23(1), 1-9. https://doi.org/10.1016/0263-8223(93)90068-2
  4. Dai, H.L., Fu, Y.M. and Dong, Z.M. (2006), "Exact solutions for functionally graded pressure vessels in a uniform magnetic field", Int. J. Solid. Struct., 43(18-19), 5570-5580. https://doi.org/10.1016/j.ijsolstr.2005.08.019
  5. Dai, H.L., Yang, L. and Zheng, H.Y. (2011), "Magnetothermoelastic analysis of functionally graded hollow spherical structures under thermal and mechanical loads", Solid State Sci., 13(2), 372-378. https://doi.org/10.1016/j.solidstatesciences.2010.11.038
  6. Eslami, M.R., Babaei, M.H. and Poultangari, R. (2005), "Thermal and mechanical stresses in a functionally graded thick sphere", Int. J. Pres. Ves. Pip., 82(7), 522-527. https://doi.org/10.1016/j.ijpvp.2005.01.002
  7. Ghannad, M., Zamani Nejad, M., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., Int. J., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
  8. John, K. (1941), Electromagnetics, McGraw-Hill Inc., New York, USA.
  9. Khdeir, A.A. (1996), "Thermoelastic analysis of cross-ply laminated circular cylindrical shells", Int. J. Solids Struct., 33(27), 4007-4017. https://doi.org/10.1016/0020-7683(95)00229-4
  10. Lee, Z.Y. (2009), "Magnetothermoelastic analysis of multilayered conical shells subjected to magnetic and vapor fields", International Journal of Thermal Sciences, 48, 50-72 https://doi.org/10.1016/j.ijthermalsci.2008.02.002
  11. Patel, B.P., Shukla, K.K. and Nath, Y. (2005), "Thermal postbuckling analysis of laminated composite cross-ply truncated circular conical shells", Compos. Struct., 71(1), 101-114. https://doi.org/10.1016/j.compstruct.2004.09.030
  12. Shahani, A.R. and Nabavi, S.M. (2007), "Analytical solution of the quasi-static thermoelasticity problem in a pressurized thick-walled cylinder subjected to trnsient thermal loading", Appl. Math. Model., 31(9), 1807-1818. https://doi.org/10.1016/j.apm.2006.06.008
  13. Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer-Verlag, London.
  14. Sobhani Aragh, B. and Yas, M.H. (2010), "Three-dimensional analysis of thermal stresses in four-parameter continuous grading fiber reinforced cylindrical panels", Int. J. Mech. Sci., 52(8), 1047-1063. https://doi.org/10.1016/j.ijmecsci.2010.04.006
  15. Sofiyev, A.H. and Kuruoglu, N. (2011), "The non-linear buckling analysis of cross-ply laminated orthotropic truncated conical shells", Compos. Struct., 93(11), 3006-3012. https://doi.org/10.1016/j.compstruct.2011.04.035
  16. Sofiyev, A.H. (2012), "The non-linear vibration of FGM truncated conical shells", Compos. Struct., 94(7), 2237-2245. https://doi.org/10.1016/j.compstruct.2012.02.005
  17. Strang, G. (1986), Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, USA.
  18. Xing, Y. and Liu, B. (2010), "A differential quadrature analysis of dynamic and quasi-static magneto-thermo-elastic stresses in a conducting rectangular plate subjected to an arbitrary variation of magnetic field", Int. J. Eng. Sci., 48(12), 1944-1960. https://doi.org/10.1016/j.ijengsci.2010.06.010
  19. Ying, J. and Wang, H.M. (2010), "Axisymmetric thermoelastic analysis in a finite hollow cylinder due to nonuniform thermal shock", Int. J. Pres. Ves. Pip., 87(12), 714-720. https://doi.org/10.1016/j.ijpvp.2010.10.002
  20. Zhao, X. and Lie,w K.M. (2011), "Free vibration analysis of functionally graded conical shell panels by a meshless method", Compos. Struct., 93(2), 694-664.
  21. Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., 13(2),157-169. https://doi.org/10.12989/scs.2012.13.2.157

Cited by

  1. Numerical prediction of the elastoplastic response of FG tubes using nonlinear kinematic hardening rule with power-law function model under thermomechanical loadings pp.0264-4401, 2019, https://doi.org/10.1108/EC-02-2018-0102
  2. Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2014, https://doi.org/10.12989/scs.2017.24.5.537
  3. Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells vol.28, pp.3, 2014, https://doi.org/10.12989/scs.2018.28.3.349
  4. Thermo-Elastic Creep Analysis and Life Assessment of Thick Truncated Conical Shells with Variable Thickness vol.11, pp.9, 2014, https://doi.org/10.1142/s1758825119500868
  5. Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads vol.26, pp.13, 2020, https://doi.org/10.1177/1077546319892753