DOI QR코드

DOI QR Code

A Study of Estimation of Forest Ecosystem Carbon Storage in Gyeryongsan National Park, Korea

계룡산 국립공원 산림생태계의 탄소축적량 산정에 관한 연구

  • 장지혜 (건국대학교 생명과학과) ;
  • 이준석 (건국대학교 생명과학과) ;
  • 정지선 (건국대학교 생명과학과) ;
  • 송태영 (산림과학원 산림생산기술연구소) ;
  • 이경재 (산림과학원 산림생산기술연구소) ;
  • 서상욱 (국립농업과학원) ;
  • 이재석 (건국대학교 생명과학과)
  • Received : 2014.12.02
  • Accepted : 2014.12.12
  • Published : 2014.12.31

Abstract

Understanding and quantifying of carbon storage in ecosystem is very important factor for predicting change of global carbon cycle under the global climate change. We estimated total ecosystem carbon in Gyeryongsan National Park with naturally well preserved ecosystem in Korea. Vegetation of Gyeryongsan National Park was classified with mainly four communities with Quercus mongolica (1,743.5 ha, 38.0%), Quercus variabilis (1,174.0 ha, 25.6%), Quercus serrata (971.9 ha, 21.2%), Pinus densiflora (695.2 ha, 15.2%). Biomass and soil carbons were calculated from biomass allometric equations based on the DBH and carbon contents of soil and litter collected in quadrat in each community. The tree biomass carbon was in Quercus variabilis ($130.1tCha^{-1}$), Pinus densiflora ($111.1tCha^{-1}$), Quercus mongolica ($76.2tCha^{-1}$), Quercus serrata ($39.0tCha^{-1}$). Soil carbon storage was in Quercus mongolica ($159.7tCha^{-1}$), Quercus serrata ($121.0tCha^{-1}$), Pinus densiflora ($110.5tCha^{-1}$), Quercus variabilis ($90.8tCha^{-1}$). Ecosystem carbon storage was Pinus densiflora ($239.9tCha^{-1}$), Quercus mongolica ($235.9tCha^{-1}$), Quercus variabilis ($226.0tCha^{-1}$), Quercus serrata ($165.9tCha^{-1}$), total amount was $867.7tCha^{-1}$. The area of each vegetation carbon storage was Quercus mongolica ($411,200tCha^{-1}$), Quercus variabilis ($265,300tCha^{-1}$), Pinus densiflora ($166,800tCha^{-1}$), Quercus serrata ($161,200tCha^{-1}$) and the total ecosystem carbon amount estimated $1,045,400tCha^{-1}$ at Gyeryongsan National Park. Theses results indicate that different in naturally well preserved ecosystem.

지역적 규모의 탄소 축적량 자료는 지역적 규모의 탄소순환 형태의 이해를 위한 필수적 요소이며 지구적 규모의 탄소순환 형태 변화를 예측하는 중요한 기초 자료가 된다. 본 연구는 국내 다양한 생태계 중 자연성이 높은 국립공원지역 산림 생태계의 탄소축적량을 산정하여 자연군락이 축적 가능한 탄소축적 잠재량을 평가하기 위해 실시되었다. 연구대상지인 계룡산 국립공원은 신갈나무류군락 1,743.5 ha (38.0%), 굴참나무류군락 1,174.0 ha (25.6%), 졸참나무류군락 971.90 ha (21.2%), 소나무류군락 695.19 ha (15.2%) 등의 순으로 분포하는 것으로 분석되었으며, 이들 군락의 분포 중심으로 판단되는 지점에 정밀 조사구를 설치하여 biomass 탄소축적량 측정을 위해 매목조사를 실시하였고, 리터층 및 토양층의 탄소축적량은 조사구 내 소방형구($30cm{\times}30cm$)를 설치, 리터와 토양 (0~30 cm)을 채취하여 측정된 리터 건중량 및 토양 유기물함량을 기초로 단위 탄소값을 구한 후 해당 군락의 총 면적으로 환산하여 산정하였다. 임목 biomass 탄소축적량은 굴참나무군락이 $130.1tCha^{-1}$, 소나무군락 $111.1tCha^{-1}$, 신갈나무군락 $76.2tCha^{-1}$, 졸참나무군락 $39.0tCha^{-1}$ 순으로 산정되었다. 리터층 탄소축적량은 소나무군락이 $18.3tCha^{-1}$, 신갈나무군락 $13.4tCha^{-1}$, 졸참나무군락 $5.8tCha^{-1}$, 굴참나무군락 $5.0tCha^{-1}$의 순으로 나타났다. 토양탄소축적량은 신갈나무군락이 $159.7tCha^{-1}$, 졸참나무군락 $121.0tCha^{-1}$, 소나무군락 $110.5tCha^{-1}$, 굴참나무군락 $90.8tCha^{-1}$의 순으로 산정되었다. 생태계탄소축적량은 소나무군락이 $239.9tCha^{-1}$, 신갈나무군락이 $235.9tCha^{-1}$, 굴참나무군락은 $226.0tCha^{-1}$, 졸참나무군락은 $165.9tCha^{-1}$를 나타냈고 총 $867.7tCha^{-1}$로 나타났다. 각 군락의 면적 별 탄소축적량은 신갈나무가 우점하는 신갈나무류군락에서 $411,200tCha^{-1}$, 굴참나무군락에서 $265,300tCha^{-1}$, 소나무군락에서 $166,800tCha^{-1}$, 졸참나무군락에서 $161,200tCha^{-1}$로 계룡산 국립공원에서 총 $1,045,400tCha^{-1}$로 산정되었다. 계룡산 국립공원의 생태계탄소축적량을 조사한 결과, 탄소축적량은 분포하고 있는 식생군락에 따라 다른 값을 보였으며, 이는 환경요인의 변화에 따른 것이다. 따라서 기후변화에 따라 식생의 분포 유형 및 종류가 변하게 되면, 생태계 탄소축적량도 변화할 것으로 예상되며, 이러한 연구를 통해 기후변화에 대한 한반도의 변화를 예측할 수 있을 것으로 판단된다.

Keywords

References

  1. Choi, S.H. and H.S. Jo. 2001. Analysis on the forest community structure of the area of Donghaksa-Nammaetap. Kyeryongsan National Park. Korean Journal of Environment and Ecology 14: 252-267.
  2. Gwon, J.H., M.K. Sin, H.J. Kwon and H.K. Song. 2013. A Study on the Forest Vegetation of Jirisan National Park. Journal of Korean Environmental Research Technology 16: 93-118.
  3. http://egis.me.go.kr/egis/home/main.asp.
  4. http://fgis.forest.go.kr/fgis/ (forest space information service).
  5. http://gyeryong.knps.or.kr/main/main_park_gyeryong.do (Gyeryongsan National Park).
  6. IPCC. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press. 188.
  7. IPCC. 2007. Climate Change 2007 (Synthesis Report).
  8. IPCC. 2007a. Climate Change 2007: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate chang. In: The physical science basis (Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  9. Kim, C.H., J.G. Oh, E.O. Kang and J.G. Lim. 2014. Community Distribution on Mountain Forest Vegetation of the Gyebangsan Area in the Odaesan National Park, Korea. Korean Journal of Ecology and Environment 47: 135-145. https://doi.org/10.11614/KSL.2014.47.3.135
  10. Kim, C.H., J.G. Oh and N.S. Lee. 2013. A Study on the Forest Vegetation of Deogyusan National Park. Korean Journal of Ecology and Environment 46: 33-40. https://doi.org/10.11614/KSL.2013.46.1.033
  11. Kim, G. and C Kim. 1988. Research trends on forest biomass production in Korea. Forest Bioenergy 8: 94-107.
  12. Kim, H.S., S.M. Lee and H.K. Song. 2010. Vegetation structure of the Hyangjeokbong in the Deogyusan National Park. Journal of Korean Environmental Research Technology 24: 708-722.
  13. Kim, H.S., S.M. Lee and H.G. Song. 2011. Actual vegetation distribution status and ecological succession in the Deogyusan National Park. Korean Journal of Environment and Ecology 25: 37-43.
  14. Kim, J.H. 1971. A study of forest productivity and growth structure. Pinus rigida plantation. Journal of Plant Biology 14: 19-23.
  15. Kim, Y.O. 2012. Study on national park visitors' consciousness on nature conservation and their attitude toward ecotourism (-Focusing on Buk Han San National Park). Tourism Research 26: 77-97.
  16. Korean Forest Research Institute. 2010. Survey manual for biomass and soil carbon.
  17. Korean Forest Research Institute. 2011. Study on the basis of forest carbon accounting in Korea. 267.
  18. Korean Forest Service. Statistical yearbook of forestry. 2010-2013.
  19. Korean Meteorological Administration. 2011. Climatological Normals of Korea (11-1360000-000077-14): 1981-2010.
  20. Kwon, G.C. and D.G. Lee. 2006, Above- and below-ground biomass and energy content of Quercus mongolica. Forest Bioenergy 25: 31-38.
  21. Kwon, S.D., J.H. Seo, Y.M. Son and Y.K. Park. 2005. Biomass carbon emissions according to conversion of forest land in Korea. Forest Bioenergy 24: 10-15.
  22. Lee, I.K., J.H. Lim, C.S. Kim and Y.K. Kim. 2006. Nutrient dynamics in decomposing leaf litter and litter production at the Long-Term Ecological Research Site in Mt. Gyebang. Journal of Ecological Field Biology 26: 585-591.
  23. Lee, I.K., K.J. Kim, J.M. Cho, D.W. Lee, D.S. Cho and J.S. Yoo, 1994, Biodiversity Korea to 2000. Minumsa. 405.
  24. Lee, I.K. and Y.H. Son. 2006. Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production of Pinus rigida and Larix kaempferi. Korean Journal of Environment and Ecology 29: 205-212.
  25. Lee, J.S. 2004. A study on change of an accumulated organic matter contents according to successional stage on temperate grassland. Korean Jornal of Environmental Biology 22: 381-386.
  26. Lee, N.Y. 2011. Estimation of Carbon Storage in Three Cool-Temperate Broad-Leaved Deciduous Forests at Bukhansan National Park, Korea. Journal of National Park Research 2: 53-57.
  27. Lee, N.Y. 2012. Estimation of carbon storage in three cooltemperate broad-leaved deciduous forests at Jirisan National Park, Korea. Korean Jornal of Environmental Biology 30: 121-127.
  28. Lee, S.G., Y.H. Son, N.J. Noh, S.J. Heo, T.K. Yoon, A.R. Lee, S.A. Razak and W.K. Lee. 2009. Carbon storage of natural pine and oak pure and mixed forests in Hoengseong, Kangwon. Journal of Korean Forest Society 98: 722-780.
  29. McCarl, B.A. and U.A. Schneider. 2001. Greenhouse gas mitigation in U.S agriculture and forest. Science 294: 2481-2482. https://doi.org/10.1126/science.1064193
  30. Oliver, H., A.F. Lotter and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101-110. https://doi.org/10.1023/A:1008119611481
  31. Park, G.S. and J.G. Lim. 2004. Annual carbon storage by fine root production in Quercus variabils stands. Korean Journal of Environment and Ecology 17: 360-365.
  32. Post, W.M. and K.C. Kwon. 2000. Soil Carbon Sequestration and Land-Use Change : Processes and Potential. Global Change Biology 6: 317-328. https://doi.org/10.1046/j.1365-2486.2000.00308.x
  33. Pregitzer, K.S. and E.S. Euskirchen. 2004. Carbon cycling and storage in world forests: biomass patterns related to forest age. Global Change Biology 10: 2052-2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
  34. Santisteban, J.I., R. Meiavilla, E. Lopez-Pamo, C.J. Dabrio, M. Zapata, M. Gracia, AC. Castano and PE Martinez-Alfaro. Ruiz. 2004. Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology 32: 287-299. https://doi.org/10.1023/B:JOPL.0000042999.30131.5b
  35. Son, Y., I.H. Park, M.J. Yi, H.O. Jin, D.Y. Kim, R.H. Kim and J.O. Hwang. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19: 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  36. Son, Y.M., J.C. Kim, G.H. Lee and R.H. Kim. 2007a. Forest Biomass Assessment in Korea. Korea Forest Research institute Research report 07-22: 11-106.
  37. Son, Y.M., G.H. Lee and R.H. Kim. 2007b. Estimation of Forest biomass in Korea. Journal of Korean Forest Society 96: 477-482.
  38. Wang, G., J. Qian, G. Cheng and Y. Lai. 2002. Soil organic carbon pool of grassland on the Qinghai-Tibetan plateau and its global implication. Science Total Environment 291: 207-217. https://doi.org/10.1016/S0048-9697(01)01100-7
  39. Weon, H.G. 2012. Forest management for increasing carbon absorbtion. Forest magazine (National forestry cooperative federation) 2: 58-62.
  40. Weon, H.Y., G.H. Oh, J.H. Pyo and H.T. Mun. 2012. Decay rate and nutrient dynamics during litter decomposition of Quercus acutissima and Quercus mysinaefolia. Korean Journal of Environment and Ecology 26: 74-81.
  41. Whittaker, R.H. and P.L. Marks. 1975. Methods of assessing terrestrial productivity. p. 55-118. In: Primary Productivity of the Biosphere (Lieth, H. and R.H. Whittaker, eds.). Springer-Verlag, New York.
  42. Yim, Y.J. and T. Kira. 1975. Distribution of forest vegetation and climate in the Korean Peninsula I. Distribution of some indices of thermal climate. Japan Journal of Ecology 25: 77-88.
  43. Zhu, B., X. Wang and J. Fang. 2010. Altitudinal changes in carbon storage of temperate forests on Mt. Changbai, Northeast China. Journal of Plant Research 123: 439-452. https://doi.org/10.1007/s10265-009-0301-1