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Best linear unbiased prediction (BLUP) has been used to estimate the fixed effects and random effects of complex traits. 
Traditionally, genomic relationship matrix-based (GRM) and random marker-based BLUP analyses are prevalent to estimate 
the genetic values of complex traits. We used three methods: GRM-based prediction (G-BLUP), random marker-based 
prediction using an identity matrix (so-called single-nucleotide polymorphism [SNP]-BLUP), and SNP-SNP variance-covariance 
matrix (so-called SNP-GBLUP). We used 35,675 SNPs and R package “rrBLUP” for the BLUP analysis. The SNP-SNP relationship 
matrix was calculated using the GRM and Sherman-Morrison-Woodbury lemma. The SNP-GBLUP result was very similar to 
G-BLUP in the prediction of genetic values. However, there were many discrepancies between SNP-BLUP and the other two 
BLUPs. SNP-GBLUP has the merit to be able to predict genetic values through SNP effects. 
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Introduction

Many important human traits are moderately to highly 
heritable [1]. Yang et al. [2] found that roughly 45% of the 
genetic variance of human height can be explained by the 
regression on common single-nucleotide polymorphisms 
(SNPs). So-called dark matter of the genome in human 
height complex traits, especially, can be explained by the 
existence of gene-by-gene or gene-by-environment interac-
tions [3-5]. Although the causal variants are not in complete 
linkage disequilibrium (LD) with the SNPs and although 
SNP-SNP interaction effects do exist, the traditional in-
dependent and identically distributed (IID) assumption has 
been used for so-called SNP−best linear unbiased predictor 
(SNP-BLUP). We calculated an SNP-SNP relationship matrix 
from a genomic relationship matrix (GRM) for best linear 
unbiased prediction (BLUP) analysis. This usage is called 

SNP-genomic linear unbiased prediction (SNP-GBLUP). The 
prediction of SNP effects is the best feature of this BLUP. This 
fact can help BLUP scientists predict the genetic values of 
other sample groups. Also, through the SNP-SNP rela-
tionship matrix, scientists can view the SNP-SNP interaction 
via the covariance terms of that matrix. 

We used the BLUP to estimate the numerical values of 
genetic factors that reside in an individual’s DNA infor-
mation. The expression of diverse and complicated genetic 
factors can lead to phenotypic quantitative values, and the 
genetic factors can translate into numerical values. SNPs can 
be the representatives of genetic factors. Therefore, the 
invisible but real SNP effects can be translated into 
numerical values. 

BLUP, including best linear unbiased estimation (BLUE), 
is a standard method for predicting the random effects and 
fixed effects of a mixed model [6]. In general, random effects 
can be SNP effects, and fixed effects can be factors, such as 
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sex. This method was originally designed in the field of 
animal breeding for estimating breeding values but is now 
applicable to many areas of research [6]. In particular, the 
advent of DNA sequencing technology has made it possible 
for the application of the BLUP-BLUE mixed model to 
predict SNP effects. The BLUP method, originally developed 
by Henderson, which is now applicable to animals, plants, 
and humans, uses statistical regression and exploits fixed 
effects as well as random effects. It is a general model that is 
able to find polygenic effects. In fact, polygenic effects are the 
replacement of quantitative trait loci (QTL) effects or 
randomly distributed genomewide effects. The mixed linear 
model, including BLUP and BLUE, is in the form:

y = Xb + Zu + e, (1)

where y is the vector of phenotypic values of given quant-
itative traits and b and u are vectors of fixed and random 
effects, respectively. X and Z are the design matrices. The 
random effects and residual error effects are assumed to have 
a normal distribution as u∼MVN(0,Gu) and e∼MVN(0,R), 
where MVN indicates a multivariate normal distribution and 
E(y) = Xb, cov(u, e’) = 0. The general solution using the 
maximum likelihood (ML) method, which shows the effects 
of b and u, is in the form of:
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Here, 
 is the inverse matrix of the variance-covariance 

matrix of random effects, which indicates the SNP-SNP 
variance-covariance matrix. The GRM, G, can be calculated 
using R package “rrBLUP.” For the feasible and precise 
prediction of the breeding value of organisms, genome-wide 
studies are quickly becoming mainstream. SNP information 
can show us the precise and broad application of BLUP, 
because it is widely applicable, and hundreds of thousands of 
genetic markers (SNPs) can be tested for association with a 
phenotype [7].

We used three methods: GRM-based BLUP (G-BLUP), 
SNP-BLUP, and SNP-GBLUP. G-BLUP is a GRM-based 
method. SNP- BLUP is assumed to be IID between SNPs [8, 
9]. SNP- GBLUP exploits the SNP-SNP relationship matrix. 
We found out the calculation method of the SNP-SNP 
variance covariance matrix using the GRM G [9-11]. The 
tabular method, to calculate the Gu matrix, developed by 
Fernando and Grossman [12], uses the IBD concept, which 
is complicated and vulnerable to incorrect calculations in 
organisms. There is no R package available in Gu matrix 
calculation (http://www.r-project.org). However, the G 
matrix can be calculated from R codes [12, 13]. We proposed 

a simple method for calculating the Gu matrix from the G 
matrix. The SNP-SNP relationship matrix means the 
variance-covariance matrix between SNPs.

Height in humans is a classical quantitative trait, is easy to 
measure, and has high heritability. The heritability of height 
has been estimated to be ∼0.8 [14-18]. We analyzed human 
height using the BLUP method. There were 997 individuals 
and 35,675 total SNPs in the analysis. Despite the use of 
many SNPs, we did not achieve satisfactory heritability 
results (about 30% of 0.8 total heritability). However, it was 
consistent with the results, which showed that 45% of 
height variance can be explained by considering all SNPs 
simultaneously.

Methods
Data preparation

We used the Ansan-Anseong cohort dataset in Korea. This 
dataset was established for a Korean chronic diseases study, 
with Ansan and Anseong representing urban and rural areas 
of Korea, respectively. The subjects were men between 40−
69 years of age who had been residents of the region for at 
least 6 months. The basic survey was conducted from 2000 
to 2001, and our study was based on the 3rd Ansan-Anseong 
cohort dataset version 2.1. We chose height as the 
phenotypic data and sex as a fixed effect. The SNPs of the 
cohort dataset were implemented using Affymetrix 
Genome-wide Human SNP Array 5.0 (Affymetrix, Santa 
Clara, CA, USA). The mean call rate was 99.01%, and the 
genetic analysis result, proved by SNPstream UHT 12 plex, 
was 99.934%. The total number of genotyped SNPs was 
352,228, and they were filtered using the conditions of 
minor allele frequency (MAF; ＜0.01), Hardy-Weinberg 
equilibrium (＜0.0001), and missing genotyping (missing 
＞ 0.2). The SNPs were pruned using PLINK (http://pngu. 
mgh.harvard.edu/~purcell/plink), leaving 35,675 SNPs for 
the analysis of human height; 997 individuals were involved 
in the analysis.

The GRM was calculated by using R package “rrBLUP” 
with the option “Expectation-Maximization (EM) algori-
thm.” Then, using the restricted maximum likelihood 
method (REML) of the same packages, we calculated the 
SNP effects, genetic values, error variance, and genetic value 
variance. The EM imputation algorithm was used for the 
GRM, because we dealt with high-density SNPs. The REML 
method is used in a rather small size sample instead of the 
ML method.

The method of statistical SNP-SNP 
variance-covariance matrix calculation

From the regression Eq. (1), Henderson [19] used the ML 
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method to derive the BLUP equation, which is in the form:

f(y, u) = g(y│u)h(u) = g(Xb + Zu + e│u)h(u) 
= g(e)m(u). (3)

Then, we used Zu as the independent variable instead of u, 
which denotes the breeding value or genetic value Zu for the 
derivation of BLUP. We assumed the normality condition of 
the genetic value Zu and random effect u. Based on these 
assumptions, the variance-covariance matrix of genetic 
values, Zu, is the GRM, G.

f(y, Zu) = g(y│Zu)h(Zu) = g(e)m(Zu) = g(e)k(u) (4)

From Eqs. (3) and (4), 
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Eqs. (5) and (6) represent the probability density function 
(pdf) of the BLUP model (Eq. 1). Eqs. (5) and (6) are 
equivalent, and we can easily know that 

 = ZTG−1Z. This 
important relationship links the SNP-SNP variance 
covariance matrix Gu to the GRM G. 

The generalized least squares for the BLUP

We used the “rrBLUP” package for calculating the G 
matrix and predicting the genetic values of men’s height 
complex traits. “rrBLUP” uses a practically generalized least 
squares (GLS) solution for the BLUP. For the G-BLUP, we 
used the G matrix, which was calculated from the R 
“rrBLUP” package using information on 35,675 SNPs. For 
the random effects estimation, such as SNP effects, we used 
two methods. One was SNP-BLUP, which is assumed to be 
IID between SNPs, and the other was SNP-GBLUP, which 
uses the statistical SNP-SNP variance covariance matrix. We 
will call this the SNP-SNP relationship matrix.
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The Sherman-Morrison-Woodbury lemma

From the relationship 
 = ZTG−1Z, we should calculate 

the inverse matrix of the 
 matrix. Because a lot of time 

was needed for calculating the inverse matrix directly, we 
used the Sherman-Morrison-Woodbury (SMW) lemma 
[20-23]. The formula was as follows:
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where A and G are both invertible, and A + YGZ* are 
invertible if and only if G−1 + Z*A−1 Y are invertible. 
Practically, to reduce the error, we used A as the identity 
matrix (I matrix), and the practically used formula was as 
follows:
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Calculating the SNP-SNP relationship matrix Gu using the 
lemma was faster than the direct calculation, because we 
used larger SNPs than the sample size. 

Results
Genetic value prediction and SNP-GBLUP

The result of the genetic value prediction is shown in Fig. 
1 (Fig. 1A, G-BLUP; Fig. 1B, SNP-BLUP; Fig. 1C, SNP- 
GBLUP). These results show the genetic value variances are 
nearly identical between G-BLUP and SNP-GBLUP. However, 
SNP-BLUP is very disparate from the other two BLUPs. Fig. 
2 shows the histogram of SNP random effects (Fig. 2A, 
SNP-BLUP; Fig. 2B, SNP-GBLUP). Both cases indicate that 
the SNP effects in both BLUPs are distributed normally and 
that they suit the normal assumption of SNP effects. 
However, the result of the genetic values was very different 
in both cases, as shown in Fig. 3 and Supplementary Table 1. 
Supplementary Table 1 shows the height phenotype and the 
genetic value prediction of the three BLUPs. G-BLUP and 
SNP-GBLUP showed identical results. The estimated 
residual error variance was 21.39 in the three BLUP cases. 
The fixed effect was 166.6 (men) and 153.3 (women) in both 
G-BLUP and SNP-GBLUP and 167.4 (men) and 154.1 
(women) in SNP-BLUP. 

SNP-SNP relationship matrix

Supplementary Table 2 shows the calculated 1-8th SNP 
components of the Gu square matrix obtained using the 
SMW lemma. The variance components (diagonal parts) 
were the values close to 1. It suggests that the Gu matrix can 
be interpreted as the SNP-SNP relationship matrix. The 
covariance components can be interpreted as the SNP-SNP 
relationships or, in other words, SNP-SNP interaction terms, 
because the variance components represent the SNPs’ 
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Fig. 1. The histogram of genetic value variances of G-BLUP (A), SNP-BLUP (B), and SNP-GBLUP (C). The shapes of the histograms of 
G-BLUP and SNP-GBLUP were nearly identical. However, the shape of the histogram of SNP-BLUP was disparate from the other two 
BLUPs. G-BLUP, genomic relationship matrix-based best linear unbiased prediction; SNP-BLUP, single nuleotide polymorphism (SNP)-best 
linear unbiased predictor; SNP-GBLUP, SNP-genomic linear unbiased prediction.

Fig. 2. The histogram of the SNP 
effects of SNP-BLUP (A) and SNP- 
GBLUP (B). They were approximately 
distributed normally. However, the 
predicted genetic values were very 
dissimilar. SNP-BLUP, single nuleo-
tide polymorphism (SNP)-best linear 
unbiased predictor; SNP-GBLUP, SNP-
genomic linear unbiased prediction.
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Fig. 3. The histogram of the genetic values of G-BLUP (A), SNP-BLUP (B), and SNP-GBLUP (C). The genetic value distribution was similar 
to the normal distribution. G-BLUP, genomic relationship matrix-based best linear unbiased prediction; SNP-BLUP, single nuleotide 
polymorphism (SNP)-best linear unbiased predictor; SNP-GBLUP, SNP-genomic linear unbiased prediction.

relationships themselves.

Estimated heritability

We estimated the narrow-sense heritability (h2) using 
simple regression between the genetic values and the height 
phenotypic values. The heritability was 0.24 in G-BLUP and 
SNP-GBLUP and 0.20 in SNP-BLUP. According to Yang et al.'s 
article [2], only 45% of variance can be explained by total 
SNPs. Therefore, our estimated heritability was not poor, 
and of the generally accepted narrow-sense heritability of 
0.8, we explained 33% in G-BLUP and SNP-GBLUP. We 
explained 53% of the heritability when using total SNPs. 
Also, we found the method that is widely applicable, 
SNP-GBLUP, because it can predict the SNP effects. It is 
impossible in G-BLUP, and Gu matrix components can be 
used widely, such as in genome-wide association studies 
(GWASs), because they can be interpreted as representing 
the interaction terms between SNPs.

Discussion
SNP-GBLUP and its applicability

The G-BLUP uses the GRM. This matrix contains the 
information between individuals. However, SNP-BLUP and 
SNP-GBLUP use the direct information between SNPs. 
SNP-BLUP is assumed to be IID between SNPs. This IID 
assumption is good but not accurate, because it ignores the 
interaction terms between SNPs. Instead, SNP-GBLUP uses 
the covariance structures directly. This BLUP is more 
proximal to actuality than SNP-BLUP.

The covariance terms of the SNP-SNP relationship matrix 
can be used as interaction terms in phenotype-related 
analysis. It can provide the scientist with clues for SNP-SNP 
interactions. The covariance terms of it are independent of 
the phenotypic values, because they came from the Z matrix 
and GRM. However, after proper constant multiplication, as 
in BLUP, they may be interpreted as interaction terms 
between SNPs. 

Probably, the SNP effects through SNP-GBLUP rather 
than SNP-BLUP can be used in Bayesian BLUP. Bayesian 
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BLUP excludes the low or zero effects of SNPs. The 
accurately calculated SNP effects through SNP-GBLUP can 
be classified into low-effect SNPs and high-effect SNPs as 
absolute values. Low-effect SNPs can be excluded, and 
Bayesian BLUP can exploit only high-effect SNPs [24-26].

Heritability and the GLS approach in BLUP

Narrow-sense heritability (h2) reflects the additive effects 
of QTL. The estimated heritability from our data was smaller 
than the generally accepted heritability. This is because 
causal variants were not in complete LD with the SNPs that 
were genotyped. Incomplete LD might occur if causal 
variants have a lower MAF than genotyped. The effects of the 
SNPs are treated statistically as random, and the SNPs have 
a small effect on the trait [2]. However, we achieved better 
heritability than the predicted value in common GWASs−
i.e., only ∼5% of the phenotypic variance in human height 
[27]. 

The present studies aim at predicting genetic values using 
the covariance structures between SNPs via GRM [28]. The 
numerator relationship matrix can be replaced by a 
genome-based GRM [29]. This G-BLUP, using GRM, uses 
information of SNPs [30]. We used three methods−parti-
cularly, the method of normal distribution-based SNP-SNP 
covariance structures. These structures were constructed 
using GRM and the Z design matrix. Algorithmically, the 
calculation of GRM uses the frequency of genotyped SNPs 
and the Z matrix. Also, in the previous study, the SNP-SNP 
covariance structures assumed that the identity matrix was 
multiplied by proper constants. However, we calculated the 
SNP-SNP relationship matrix using GRM and the Z matrix. 
This square matrix contains the information of relations 
between SNPs and can make it possible to estimate the SNP 
effects. Also, adequate use of the SMW lemma could make it 
plausible to estimate the SNP effects and genetic values 
simultaneously with faster computation time [21]. We 
expect that SNP-SNP covariance structures can make it 
feasible for calculating the genetic values and SNP effects 
that are linked to the QTL more accurately. 

Genetic value estimation combines the performance and 
kinship information, which is based on a known pedigree 
[31]. The accuracy of genomic prediction depends on many 
factors, such as the genetic architecture of the trait and the 
population, the methodology of estimating the SNP effects, 
the distribution of the markers, and the degree of LD [32]. 
These can be important for accurate BLUP analysis, and 
there can be two approaches for solving BLUP. The GLS 
approach and Henderson’s ML-based approach lead to 
identical solutions. The “rrBLUP” package uses the GLS 
approach. In that package, when the GRM is calculated, the 
imputation uses the mean method or EM algorithm. 

Especially, the EM algorithm can be used for haplotype 
inferences with SNPs. The EM algorithm is the most popular 
statistical algorithm because of its interpretability and 
stability. This algorithm is a deterministic procedure, con-
sumes less computation time, and is easier for convergence 
checks [33]. The REML method is used in BLUP analysis 
with a small sample size. The use of REML for variance 
component estimation avoids the small sample bias asso-
ciated with fixed effects and seems to avoid selection bias. 
Henderson [34] asserted the use of REML in BLUP models 
[35, 36]. Thus, we used the EM algorithm and REML 
method schemes. 

Supplementary materials

Supplementary data including two tables can be found 
with this article at http://www.genominfo.org/src/sm/gni- 
12-254-s001.pdf.
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