DOI QR코드

DOI QR Code

Genome Architecture and Its Roles in Human Copy Number Variation

  • Chen, Lu (School of Life Sciences, Fudan University) ;
  • Zhou, Weichen (School of Life Sciences, Fudan University) ;
  • Zhang, Ling (School of Life Sciences, Fudan University) ;
  • Zhang, Feng (School of Life Sciences, Fudan University)
  • Received : 2014.10.13
  • Accepted : 2014.11.12
  • Published : 2014.12.31

Abstract

Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs), are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

Keywords

References

  1. Lupski JR. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 1998;14:417-422. https://doi.org/10.1016/S0168-9525(98)01555-8
  2. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet 2004;36:949-951. https://doi.org/10.1038/ng1416
  3. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science 2004;305:525-528. https://doi.org/10.1126/science.1098918
  4. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7:85-97.
  5. Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev Mol Med 2010;12:e8. https://doi.org/10.1017/S1462399410001390
  6. Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet 2002;18:74-82. https://doi.org/10.1016/S0168-9525(02)02592-1
  7. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362:1366-1373. https://doi.org/10.1016/S0140-6736(03)14632-6
  8. Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci U S A 2006;103:7729-7734. https://doi.org/10.1073/pnas.0600206103
  9. McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 2011;90:1-18. https://doi.org/10.1097/MD.0b013e3182060469
  10. Breckpot J, Thienpont B, Bauters M, Tranchevent LC, Gewillig M, Allegaert K, et al. Congenital heart defects in a novel recurrent 22q11.2 deletion harboring the genes CRKL and MAPK1. Am J Med Genet A 2012;158A:574-580. https://doi.org/10.1002/ajmg.a.35217
  11. Lupski JR, de Oca-Luna RM, Slaugenhaupt S, Pentao L, Guzzetta V, Trask BJ, et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 1991;66:219-232. https://doi.org/10.1016/0092-8674(91)90613-4
  12. Zhang F, Seeman P, Liu P, Weterman MA, Gonzaga-Jauregui C, Towne CF, et al. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am J Hum Genet 2010;86:892-903. https://doi.org/10.1016/j.ajhg.2010.05.001
  13. Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 1996;6:743-748. https://doi.org/10.1016/S0959-437X(96)80030-X
  14. Zhou W, Zhang F, Chen X, Shen Y, Lupski JR, Jin L. Increased genome instability in human DNA segments with self-chains: homology-induced structural variations via replicative mechanisms. Hum Mol Genet 2013;22:2642-2651. https://doi.org/10.1093/hmg/ddt113
  15. Smit AF. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 1999;9:657-663. https://doi.org/10.1016/S0959-437X(99)00031-3
  16. Eichler EE. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet 2001;17: 661-669. https://doi.org/10.1016/S0168-9525(01)02492-1
  17. Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, et al. Recent segmental duplications in the human genome. Science 2002;297:1003-1007. https://doi.org/10.1126/science.1072047
  18. Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 2006;7:552-564.
  19. Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW, et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 2009;457:877-881. https://doi.org/10.1038/nature07744
  20. Olson MV, Varki A. Sequencing the chimpanzee genome: insights into human evolution and disease. Nat Rev Genet 2003;4:20-28. https://doi.org/10.1038/nrg981
  21. Nelson PN, Hooley P, Roden D, Davari Ejtehadi H, Rylance P, Warren P, et al. Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol 2004;138:1-9. https://doi.org/10.1111/j.1365-2249.2004.02592.x
  22. Kim PM, Lam HY, Urban AE, Korbel JO, Affourtit J, Grubert F, et al. Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res 2008;18:1865-1874. https://doi.org/10.1101/gr.081422.108
  23. Jiang Z, Tang H, Ventura M, Cardone MF, Marques-Bonet T, She X, et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat Genet 2007;39:1361-1368. https://doi.org/10.1038/ng.2007.9
  24. Dittwald P, Gambin T, Gonzaga-Jauregui C, Carvalho CM, Lupski JR, Stankiewicz P, et al. Inverted low-copy repeats and genome instability: a genome-wide analysis. Hum Mutat 2013;34:210-220. https://doi.org/10.1002/humu.22217
  25. Fu W, Zhang F, Wang Y, Gu X, Jin L. Identification of copy number variation hotspots in human populations. Am J Hum Genet 2010;87:494-504. https://doi.org/10.1016/j.ajhg.2010.09.006
  26. Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 2009;84:148-161. https://doi.org/10.1016/j.ajhg.2008.12.014
  27. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011;12:363-376. https://doi.org/10.1038/nrg2958
  28. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature 2010;464:704-712. https://doi.org/10.1038/nature08516
  29. Dittwald P, Gambin T, Szafranski P, Li J, Amato S, Divon MY, et al. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res 2013;23:1395-1409. https://doi.org/10.1101/gr.152454.112
  30. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. Mapping copy number variation by population-scale genome sequencing. Nature 2011;470:59-65. https://doi.org/10.1038/nature09708
  31. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med 2010;61:437-455. https://doi.org/10.1146/annurev-med-100708-204735
  32. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 2005;77:78-88. https://doi.org/10.1086/431652
  33. Liu P, Lacaria M, Zhang F, Withers M, Hastings PJ, Lupski JR. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 2011;89:580-588. https://doi.org/10.1016/j.ajhg.2011.09.009
  34. Peng Z, Zhou W, Fu W, Du R, Jin L, Zhang F. Correlation between frequency of non-allelic homologous recombination and homology properties: evidence from homology-mediated CNV mutations in the human genome. Hum Mol Genet 2014 Oct 16 [Epub]. http://dx.doi.org/10.1093/hmg/ddu533.
  35. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921. https://doi.org/10.1038/35057062
  36. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703. https://doi.org/10.1038/nrg2640
  37. Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 2007;23:158-161. https://doi.org/10.1016/j.tig.2007.02.002
  38. Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002;3:370-379. https://doi.org/10.1038/nrg798
  39. Sasaki M, Lange J, Keeney S. Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 2010;11:182-195. https://doi.org/10.1038/nrm2849
  40. de Smith AJ, Walters RG, Coin LJ, Steinfeld I, Yakhini Z, Sladek R, et al. Small deletion variants have stable breakpoints commonly associated with alu elements. PLoS One 2008;3:e3104. https://doi.org/10.1371/journal.pone.0003104
  41. Gu W, Zhang F, Lupski JR. Mechanisms for human genomic rearrangements. Pathogenetics 2008;1:4. https://doi.org/10.1186/1755-8417-1-4
  42. Erez A, Patel AJ, Wang X, Xia Z, Bhatt SS, Craigen W, et al. Alu-specific microhomology-mediated deletions in CDKL5 in females with early-onset seizure disorder. Neurogenetics 2009; 10:363-369. https://doi.org/10.1007/s10048-009-0195-z
  43. Matejas V, Huehne K, Thiel C, Sommer C, Jakubiczka S, Rautenstrauss B. Identification of Alu elements mediating a partial PMP22 deletion. Neurogenetics 2006;7:119-126. https://doi.org/10.1007/s10048-006-0030-8
  44. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grutzner F, et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008;453:175-183. https://doi.org/10.1038/nature06936
  45. Higashimoto K, Maeda T, Okada J, Ohtsuka Y, Sasaki K, Hirose A, et al. Homozygous deletion of DIS3L2 exon 9 due to non-allelic homologous recombination between LINE-1s in a Japanese patient with Perlman syndrome. Eur J Hum Genet 2013;21:1316-1319. https://doi.org/10.1038/ejhg.2013.45
  46. Janousek V, Karn RC, Laukaitis CM. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family. BMC Evol Biol 2013;13:107. https://doi.org/10.1186/1471-2148-13-107
  47. Yang N, Kazazian HH Jr. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 2006;13:763-771. https://doi.org/10.1038/nsmb1141
  48. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, et al. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 1992;52:643-645.
  49. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988;332:164-166. https://doi.org/10.1038/332164a0
  50. Belancio VP, Deininger PL, Roy-Engel AM. LINE dancing in the human genome: transposable elements and disease. Genome Med 2009;1:97. https://doi.org/10.1186/gm97
  51. Dangel AW, Mendoza AR, Baker BJ, Daniel CM, Carroll MC, Wu LC, et al. The dichotomous size variation of human complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-specific genomic patterns among Old World primates. Immunogenetics 1994;40:425-436.
  52. Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, et al. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013;34:1415-1423. https://doi.org/10.1002/humu.22384
  53. Hermetz KE, Surti U, Cody JD, Rudd MK. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol Cytogenet 2012;5:6. https://doi.org/10.1186/1755-8166-5-6
  54. Kamp C, Ditton H, Huellen K, Vogt PH. Complex human Y-chromosomal HERV sequence structure in the AZFa region: new candidate genes for the control of early germ cell proliferation? Eur J Hum Genet 2001;9(Suppl 1):C044.
  55. Bosch E, Jobling MA. Duplications of the AZFa region of the human Y chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility. Hum Mol Genet 2003;12:341-347. https://doi.org/10.1093/hmg/ddg031
  56. Arruda JT, Silva DM, Silva CC, Moura KK, da Cruz AD. Homologous recombination between HERVs causes duplications in the AZFa region of men accidentally exposed to cesium- 137 in Goiania. Genet Mol Res 2008;7:1063-1069. https://doi.org/10.4238/vol7-4gmr492
  57. Koh E. Male infertility and genome disease -mechanism of microdeletions in azoospermia factor (AZF) regions and genomic diversification of the Y chromosome through analysis of human endogenous retrovirus. Genes Genet Syst 2010;85:445.
  58. Carvalho CM, Zhang F, Lupski JR. Structural variation of the human genome: mechanisms, assays, and role in male infertility. Syst Biol Reprod Med 2011;57:3-16. https://doi.org/10.3109/19396368.2010.527427
  59. Chen JM, Chuzhanova N, Stenson PD, Férec C, Cooper DN. Complex gene rearrangements caused by serial replication slippage. Hum Mutat 2005;26:125-134. https://doi.org/10.1002/humu.20202
  60. Carvalho CM, Ramocki MB, Pehlivan D, Franco LM, Gonzaga- Jauregui C, Fang P, et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat Genet 2011;43:1074-1081. https://doi.org/10.1038/ng.944
  61. Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet 2009;5:e1000327. https://doi.org/10.1371/journal.pgen.1000327
  62. Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet 2009;41:849-853. https://doi.org/10.1038/ng.399
  63. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 2003;100:11484-11489. https://doi.org/10.1073/pnas.1932072100
  64. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, et al. Human-mouse alignments with BLASTZ. Genome Res 2003;13:103-107. https://doi.org/10.1101/gr.809403
  65. Chen X, Shen Y, Zhang F, Chiang C, Pillalamarri V, Blumenthal I, et al. Molecular analysis of a deletion hotspot in the NRXN1 region reveals the involvement of short inverted repeats in deletion CNVs. Am J Hum Genet 2013;92:375-386. https://doi.org/10.1016/j.ajhg.2013.02.006
  66. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010;79:181-211. https://doi.org/10.1146/annurev.biochem.052308.093131
  67. Moore JK, Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double- strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 1996;16:2164-2173. https://doi.org/10.1128/MCB.16.5.2164
  68. Conrad DF, Hurles ME. The population genetics of structural variation. Nat Genet 2007;39(7 Suppl):S30-S36. https://doi.org/10.1038/ng2042
  69. Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR. Human mutation rate associated with DNA replication timing. Nat Genet 2009;41:393-395. https://doi.org/10.1038/ng.363
  70. Yao NY, O'Donnell M. SnapShot: the replisome. Cell 2010; 141:1088. https://doi.org/10.1016/j.cell.2010.05.042
  71. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol 2013;5:a010132.
  72. Farkash-Amar S, Simon I. Genome-wide analysis of the replication program in mammals. Chromosome Res 2010;18:115-125. https://doi.org/10.1007/s10577-009-9091-5
  73. Ryba T, Battaglia D, Pope BD, Hiratani I, Gilbert DM. Genome-scale analysis of replication timing: from bench to bioinformatics. Nat Protoc 2011;6:870-895. https://doi.org/10.1038/nprot.2011.328
  74. Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res 2010;18:19-34. https://doi.org/10.1007/s10577-009-9099-x
  75. Koren A, Polak P, Nemesh J, Michaelson JJ, Sebat J, Sunyaev SR, et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet 2012;91:1033-1040. https://doi.org/10.1016/j.ajhg.2012.10.018
  76. Bechhoefer J, Rhind N. Replication timing and its emergence from stochastic processes. Trends Genet 2012;28:374-381. https://doi.org/10.1016/j.tig.2012.03.011
  77. Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J, et al. Predictable dynamic program of timing of DNA replication in human cells. Genome Res 2009;19:2288-2299. https://doi.org/10.1101/gr.094060.109
  78. Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, et al. Global organization of replication time zones of the mouse genome. Genome Res 2008;18:1562-1570. https://doi.org/10.1101/gr.079566.108
  79. Hansen RS, Canfield TK, Lamb MM, Gartler SM, Laird CD. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 1993;73:1403-1409. https://doi.org/10.1016/0092-8674(93)90365-W
  80. MacAlpine DM, Rodriguez HK, Bell SP. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 2004;18:3094-3105. https://doi.org/10.1101/gad.1246404
  81. Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008;6:e245. https://doi.org/10.1371/journal.pbio.0060245
  82. Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, et al. Replication timing of the human genome. Hum Mol Genet 2004;13:191-202. https://doi.org/10.1093/hmg/ddh016
  83. Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 2011;20:670-680. https://doi.org/10.1093/hmg/ddq513
  84. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 2010;20:761-770. https://doi.org/10.1101/gr.099655.109
  85. Cardoso-Moreira M, Emerson JJ, Clark AG, Long M. Drosophila duplication hotspots are associated with late-replicating regions of the genome. PLoS Genet 2011;7:e1002340. https://doi.org/10.1371/journal.pgen.1002340
  86. Lu J, Li H, Hu M, Sasaki T, Baccei A, Gilbert DM, et al. The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming. Cell Rep 2014;7:70-78. https://doi.org/10.1016/j.celrep.2014.03.007
  87. Watanabe Y, Maekawa M. Spatiotemporal regulation of DNA replication in the human genome and its association with genomic instability and disease. Curr Med Chem 2010;17:222-233. https://doi.org/10.2174/092986710790149756
  88. Litmanovitch T, Altaras MM, Dotan A, Avivi L. Asynchronous replication of homologous alpha-satellite DNA loci in man is associated with nondisjunction. Cytogenet Cell Genet 1998;81:26-35. https://doi.org/10.1159/000015003
  89. Grinberg-Rashi H, Cytron S, Gelman-Kohan Z, Litmanovitch T, Avivi L. Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients. Neoplasia 2010;12:668-674. https://doi.org/10.1593/neo.10568
  90. Fritz A, Sinha S, Marella N, Berezney R. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells. J Cell Biochem 2013;114:1074-1083. https://doi.org/10.1002/jcb.24447
  91. Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol 2013;23:80-89. https://doi.org/10.1016/j.semcancer.2013.01.001
  92. Woo YH, Li WH. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun 2012;3:1004. https://doi.org/10.1038/ncomms1982
  93. De S, Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat Biotechnol 2011;29:1103-1108. https://doi.org/10.1038/nbt.2030
  94. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013;501:338-345. https://doi.org/10.1038/nature12625
  95. Chen L, Zhou W, Zhang C, Lupski JR, Jin L, Zhang F. CNV instability associated with DNA replication dynamics: evidence for replicative mechanisms in CNV mutagenesis. Hum Mol Genet 2014 Nov 14 [Epub]. http://dx.doi.org/10.1093/hmg/ddu572.

Cited by

  1. Genetic Landscape of Primary Versus Metastatic Colorectal Cancer: to What Extent Are They Concordant? vol.11, pp.5, 2015, https://doi.org/10.1007/s11888-015-0278-1
  2. Clinical implications of copy number variations in autoimmune disorders vol.30, pp.3, 2015, https://doi.org/10.3904/kjim.2015.30.3.294
  3. Major influence of repetitive elements on disease-associated copy number variants (CNVs) vol.10, pp.1, 2016, https://doi.org/10.1186/s40246-016-0088-9
  4. The role of human endogenous retroviruses in brain development and function vol.124, pp.1-2, 2016, https://doi.org/10.1111/apm.12495
  5. Genomic architecture of human chromosomal diseases vol.52, pp.5, 2016, https://doi.org/10.1134/S1022795416040062
  6. Genome annotation for clinical genomic diagnostics: strengths and weaknesses vol.9, pp.1, 2017, https://doi.org/10.1186/s13073-017-0441-1
  7. De novo HNF1 homeobox B mutation as a cause for chronic, treatment-resistant hypomagnesaemia vol.2018, pp.2052-0573, 2018, https://doi.org/10.1530/EDM-17-0120